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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract 
In this paper, I describe the main techniques used to solve mining frequent itemset problems 

and give a comprehensive survey of the most influential algorithms that were proposed. The 
Apriori Algorithm was first algorithm proposed for mining frequent itemsets problem. I will 
present new improvements on Apriori algorithm which solve these mining problems more 
efficiently. 

1 Introduction 
Most of the established companies have accumulated masses of data from their customers for 

decades. With the e-commerce applications growing rapidly, the companies will have a significant 
amount of data in months not in years. The scope of Data Mining, also known as Knowledge 
Discovery in Databases (KDD), is to find trends, patterns, correlations, anomalies in these 
databases which can help us to make accurate future decisions. 

Data mining is not magic. No one can guarantee that the decision will lead to good results. 
Data Mining only helps experts to understand the data and lead to good decisions. Data Mining is 
an intersection of the fields Databases, Artificial Intelligence and Machine Learning. 

Since their introduction in 1993 by Argawal et al. [1], the frequent itemset and association rule 
mining problems have received a great deal of attention. Within the past decade, hundreds of 
research papers have been published presenting new algorithms or improvements on existing 
algorithms to solve these mining problems more efficiently. 

2 Problem Descriptions 
Let ),...,,( 21 miiiI �  be a set of transactions. Each i is called an item. D is the set of transactions 

where each transaction T is a set of items (itemset) such that IT 0 . Every transaction has a 
unique identifier called the TID. An itemset having k items is called a k-itemset. Let X and Y be
distinct itemsets. The support of an itemset X is the ratio of the itemsets containing X to the 
number of all itemsets. Let us define |X| as the number of itemsets containing X and |D| as the 
number of all items, |X,Y| as the number of itemsets containing both X and Y. The support of 
itemset X is defined as follows: 

| |( )=
| |
Xsupport X
D
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The rule YX F  has support s if %s of the transactions in D contain X and Y together. 
| , |( )

| |
X Ysupport X Y
D

F �  

Support measures how common the itemsets are in the database and confidence measures the 
strength of the rule. A rule is said to have confidence c if %c of the transactions that contains X 
also contains Y.

( , )( )
( )

support X Yconfidence X Y
support X

F �

Given a set of transactions D the task of association rule mining is to find rules YX F such 
that the support of the rule is greater than a user specified minimum support called minsupp and
the confidence is greater than a user specified minimum called minconf. An itemset is called 
frequend if its support is greater than minsupp.

The collection of frequent itemsets in D which have their support grater then minsupp is 
denoted by F. 

F={ X I0 | support(X) � minsupp}. 
The task of association rule mining can be divided into two: In the first phase, the frequent 

itemsets are found using minsupp, and in the second phase, the rules are generated using minconf.
The collection of frequent and confident association rules with respect to minsupp and minconf 

is denoted by R.  
{ | , , {}, , ( ) }R X Y X Y I X Y X Y F confidence X Y minconf� F 0 8 � 9 � F E

The algorithms that implement association mining make multiple passes over the data. Most 
algorithms first find the frequent itemsets and then generate the rules accordingly. They find the 
large itemsets incrementally increasing itemset sizes and then counting the itemsets to see if they 
are large or not. Since finding the large itemsets is the hard part, research mostly focused on this 
topic. 

3 Apriori Algorithm
The first algorithm to generate all frequent itemsets and confident association rules was the 

AIS algorithm by Agrawal et al. [1], which was given together with the introduction of this 
mining problem. Shortly after that, the algorithm was improved and renamed Apriori by Agrawal 
et al., by exploiting the monotonicity property of the support of itemsets and the confidence of 
association rules [3, 15].  

For simplicity the items in transactions and itemsets are kept sorted in their lexicographic 
order unless stated otherwise. The itemset mining phase of the Apriori algorithm is given in 
Listing 1. I use the notation X[i], to represent the ith item in X. The k-prefix of an itemset X is the 
k-itemset {X[1], . . . ,X[k]}.

Listing 1. Apriori algorithm – Itemset mining 
Input: D, minsupp 
Output: F 
   C1={{i}|i� I}; 
   k=1; 
   wwhile Ck�{} ddo{  
      //Compute the supports of all candidate itemsets 
      fforall transactions(tid,D)�D 
         fforall candidate itemsets X�Ck 
             iif ( X I0 ) 
                X.support++; 
      //Extract all frequent itemsets 
      Fk = {X|X.support � minsupp}; 
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      //Generate new candidate itemsets 
      fforall X,Y �  Fk, X[i]=Y[i] for 1 � i � k-1, and X[k}<Y[k]{ 
           { [ ]}I X Y k� 9 ; 

           iif ( ,| | , kJ I J k J F4 3 � � ) 

                Ck+1= Ck+19 I; 
      } 
      k++; 
  } 

The algorithm performs a breadth-first search through the search space of all itemsets by 
iteratively generating candidate itemsets Ck+1 of size k+1, starting with k = 0. An itemset is a 
candidate if all of its subsets are known to be frequent. More specifically, C1 consists of all items 
in I, and at a certain level k, all itemsets of size k+1 are generated. This is done in two steps. First, 
in the join step, Fk is joined with itself. The union X Y9 of itemsets X,Y �Fk is generated if they 
have the same (k	1) - prefix. In the prune step, X Y9 is only inserted into Ck+1 if all of its k-
subsets occur in Fk.

To count the supports of all candidate k-itemsets, the database, which retains on secondary 
storage in the horizontal database layout, is scanned one transaction at a time, and the supports of 
all candidate itemsets that are included in that transaction are incremented . All itemsets that turn 
out to be frequent are inserted into Fk.

If the number of candidate (k +1) - itemsets is too large to retain into main memory, the 
candidate generation procedure stops and the supports of all generated candidates is computed as 
if nothing happened. But then, in the next iteration, instead of generating candidate itemsets of 
size k +2, the remainder of all candidate (k+1) - itemsets is generated and counted repeatedly 
until all frequent itemsets of size k + 1 are generated. 

4. Data Structures 
The candidate generation and the support counting processes require an efficient data structure 

in which all candidate itemsets are stored since it is important to efficiently find the itemsets that 
are contained in a transaction or in another itemset. 

4.1. Hash-tree 
In order to efficiently find all k-subsets of a potential candidate itemset, all frequent itemsets 

in Fk are stored in a hash table. 
Candidate itemsets are stored in a hash-tree [2]. A node of the hash-tree either contains a list 

of itemsets (a leaf node) or a hash table (an interior node). In an interior node, each bucket of the 
hash table points to another node. The root of the hash-tree is defined to be at depth 1. An interior 
node at depth d points to nodes at depth d+1. Itemsets are stored in leaves. 

When we add a k-itemset X during the candidate generation process, we start from the root and 
go down the tree until we reach a leaf. At an interior node at depth d, we decide which branch to 
follow by applying a hash function to the X[d] item of the itemset, and following the pointer in 
the corresponding bucket. All nodes are initially created as leaf nodes. When the number of 
itemsets in a leaf node at depth d exceeds a specified threshold, the leaf node is converted into an 
interior node, only if k>d.

In order to find the candidate-itemsets that are contained in a transaction T, we start from the 
root node. If we are at a leaf, we find which of the itemsets in the leaf are contained in T and 
increment their support. If we are at an interior node and we have reached it by hashing the item i,
we hash on each item that comes after i in T and recursively apply this procedure to the node in 
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the corresponding bucket. For the root node, we hash on every item in T. An example of hash-tree 
structure for five items is presented in figure 1. 

Figure 1. Hash-tree structure 

4.2. Trie 
Another data structure that is commonly used is a trie (or prefix-tree) [5,7, 8, 6]. In a trie, 

every k-itemset has a node associated with it, as does its (k	1) - prefix. The empty itemset is the 
root node. All the 1-itemsets are attached to the root node, and their branches are labeled by the 
item they represent. Every other k-itemset is attached to its (k	1) - prefix. Every node stores the 
last item in the itemset it represents, its support, and its branches. The branches of a node can be 
implemented using several data structures such as a hash table, a binary search tree or a vector. 
An example of prefix-tree structure for five items is presented in figure 2. 

Figure 2. Prefix-tree structure 

At a certain iteration k, all candidate k-itemsets are stored at depth k in the trie. In order to find 
the candidate-itemsets that are contained in a transaction T, we start at the root node. To process a 
transaction for a node of the trie, (1) follow the branch corresponding to the first item in the 
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transaction and process the remainder of the transaction recursively for that branch, and (2) 
discard the first item of the transaction and process it recursively for the node itself. This 
procedure can still be optimized, as is described in [7]. 

Also the join step of the candidate generation procedure becomes very simple using a trie, 
since all itemsets of size k with the same (k	1) – prefix are represented by the branches of the 
same node (that node represents the (k	1) - prefix). Indeed, to generate all candidate itemsets with 
(k	1) – prefix X, we simply copy all siblings of the node that represents X as branches of that 
node. Moreover, we can try to minimize the number of such siblings by reordering the items in the 
database in support ascending order [7, 8, 6]. Using this heuristic, we reduce the number of 
itemsets that is generated during the join step, and hence, we implicitly reduce the number of 
times the prune step needs to be performed. Also, to find the node representing a specific k-
itemset in the trie, we have to perform k searches within a set of branches. Obviously, the 
performance of such a search can be improved when these sets are kept as small as possible. 

An in depth study on the implementation details of a trie for Apriori can be found in [7]. 

5. Optimizations 
A lot of other algorithms proposed after the introduction of Apriori retain the same general 

structure, adding several techniques to optimize certain steps within the algorithm. Since the 
performance of the Apriori algorithm is almost completely dictated by its support counting 
procedure, most research has focused on that aspect of the Apriori algorithm. The performance of 
this procedure is mainly dependent on the number of candidate itemsets that occur in each 
transaction.

5.1. AprioriTid, AprioriHybrid 
Together with the proposal of the Apriori algorithm, Agrawal et al. [3, 2] proposed two other 

algorithms, AprioriTid and AprioriHybrid. The AprioriTid algorithm reduces the time needed for 
the support counting procedure by replacing every transaction in the database by the set of 
candidate itemsets that occur in that transaction. This is done repeatedly at every iteration k. The 
adapted transaction database is denoted by kC . The algorithm is given in Listing 2. 

More implementation details of this algorithm can be found in [4]. Although the AprioriTid 
algorithm is much faster in later iterations, it performs much slower than Apriori in early 
iterations. This is mainly due to the additional overhead that is created when kC  does not fit into 
main memory and has to be written to disk. If a transaction does not contain any candidate k-
itemsets, then kC  will not have an entry for this transaction. Hence, the number of entries in kC
may be smaller than the number of transactions in the database, especially at later iterations of the 
algorithm. Additionally, at later iterations, each entry may be smaller than the corresponding 
transaction because very few candidates may be contained in the transaction. However, in early 
iterations, each entry may be larger than its corresponding transaction. 

Therefore, another algorithm, AprioriHybrid, has been proposed [3,2] that combines the 
Apriori and AprioriTid algorithms into a single hybrid. This hybrid algorithm uses Apriori for the 
initial iterations and switches to AprioriTid when it is expected that the set kC  fits into main 
memory. Since the size of kC  is proportional with the number of candidate itemsets, a heuristic is 
used that estimates the size that kC  would have in the current iteration. If this size is small enough 
and there are fewer candidate patterns in the current iteration than in the previous iteration, the 
algorithm decides to switch to AprioriTid 
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Listing 2. AprioriTid algorithm 
Input: D, minsupp 
Output: F 
   Compute F1 of all frequent items; 

   1C =D; (with all items not in F1 removed) 

   k=2; 
   wwhile Fk-1�{} ddo{ 
       Compute Ck of all candidate k-itemsets 

       kC ={}; 

       // Compute the supports of all candidate itemsets 
       fforall transactions(tid,T)�Ck { 
            CT = {}; 
            fforall X�Ck  

              iif ({ [1],..., [ 1]} { [1],..., [ 2], [ ]}X X k T X X k X k T� � 1 � � ){ 

                    { }T TC C X� 9 ; 

                    X.support++;   
              } 
            iif (CT�{})   

              {( , )}k k TC C tid C� 9          

       } 
       Extract Fk of all frequent k-itemsets; 
       k++; 

   }

5.2 Counting candidate 2-itemsets 
Shortly after the proposal of the Apriori algorithms described before, Park et al. proposed 

another optimization, called DHP (Direct Hashing and Pruning) to reduce the number of candidate 
itemsets [13]. During the kth iteration, when the supports of all candidate k-itemsets are counted 
by scanning the database, DHP already gathers information about candidate itemsets of size k + 1
in such a way that all (k + 1)-subsets of each transaction after some pruning are hashed to a hash 
table. Each bucket in the hash table consists of a counter to represent how many itemsets have 
been hashed to that bucket so far. Then, if a candidate itemset of size k+1 is generated, the hash 
function is applied on that itemset. If the counter of the corresponding bucket in the hash table is 
below the minimal support threshold, the generated itemset is not added to the set of candidate 
itemsets. Also, during the support counting phase of iteration k, every transaction trimmed in the 
following way. If a transaction contains a frequent itemset of size k+1, any item contained in that 
k+1 itemset will appear in at least k of the candidate k-itemsets in Ck. As a result, an item in 
transaction T can be trimmed if it does not appear in at least k of the candidate k-itemsets in Ck.
These techniques result in a significant decrease in the number of candidate itemsets that need to 
be counted, especially in the second iteration. Nevertheless, creating the hash tables and writing 
the adapted database to disk at every iteration causes a significant overhead. 

Although DHP was reported to have better performance than Apriori and AprioriHybrid, this 
claim was countered by Ramakrishnan if the following optimization is added to Apriori [14]. 
Instead of using the hash-tree to store and count all candidate 2-itemsets, a triangular array C is 
created, in which the support counter of a candidate 2-itemset {i, j} is stored at location C[i][j].
Using this array, the support counting procedure reduces to a simple two level for-loop over each 
transaction. A similar technique was later used by Orlando et al. in their DCP and DCI algorithms 
[11, 12]. 

Since the number of candidate 2-itemsets is exactly 1
2( )F , it is still possible that this number is 

too large, such that only part of the structure can be generated and multiple scans over the 
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database need to be performed. A lot of candidate 2-itemsets do not even occur at all in the 
database, and hence, their support remains 0. Therefore, we propose the following optimization. 
When all single items are counted, resulting in the set of all frequent items F1, we do not generate 
any candidate 2-itemset. Instead, we start scanning the database, and remove from each 
transaction all items that are not frequent. Then, for each trimmed transaction, we increase the 
support of all candidate 2-itemsets contained in that transaction. However, if the candidate 2-
itemset does not yet exists, we generate the candidate itemset and initialize its support to 1. In this 
way, only those candidate 2-itemsets that occur at least once in the database are generated.  

5.3. Support lower bounding 
Apart from the monotonicity property, it is sometimes possible to derive information on the 

support of an itemset, given the support of all of its subsets. The first algorithm that uses such a 
technique was proposed by Bayardo in his MaxMiner and Apriori-LB algorithms [6].  

In practice, this lower bound can be used in the following way. Every time a candidate (k + 1)
- itemset is generated by joining two of its subsets of size k, we can easily compute this lower 
bound for that candidate. Indeed, suppose the candidate itemset 1 2{ , }X i i9  is generated by joining 

1{ }X i9  and 2{ }X i9 , we simply add up the supports of these two itemsets and subtract the 
support of X. If this lower bound is higher than the minimal support threshold, then we already 
know that it is frequent and hence, we can already generate candidate itemsets of larger sizes for 
which this lower bound can again be computed. Nevertheless, we still need to count the exact 
supports of all these itemsets, but this can be done all at once during the support counting 
procedure. Using the efficient support counting mechanism as I described before, this 
optimization could result in significant performance improvements. 

Calders and Goethals presented a generalization of all these techniques resulting in a system 
of deduction rules that derive tight bounds on the support of candidate itemsets [9]. These 
deduction rules allow for constructing a minimal representation of all frequent itemsets, but can 
also be used to efficiently generate the set of all frequent itemsets. Unfortunately, for a given 
candidate itemset, an exponential number of rules in the length of the itemset need to be 
evaluated. The rules presented in this section, which are part of the complete set of derivation 
rules, are shown to result in significant performance improvements, while the other rules only 
show a marginal improvement. 

5.4. Dynamic Itemset Counting
The DIC algorithm, proposed by Brin et al. tries to reduce the number of passes over the 

database by dividing the database into intervals of a specific size [8]. First, all candidate patterns 
of size 1 are generated. The supports of the candidate sets are then counted over the first interval 
of the database. Based on these supports, a new candidate pattern of size 2 is already generated if 
all of its subsets are already known to be frequent, and its support is counted over the database 
together with the patterns of size 1. In general, after every interval, candidate patterns are 
generated and counted. The algorithm stops if no more candidates can be generated and all 
candidates have been counted over the complete database. Although this method drastically 
reduces the number of scans through the database, its performance is also heavily dependent on 
the distribution of the data. 

Although the authors claim that the performance improvement of reordering all items in 
support ascending order is negligible, this is not true for Apriori in general. Indeed, the reordering 
used in DIC was based on the supports of the 1-itemsets that were computed only in the first 
interval. Obviously, the success of this heuristic also becomes highly dependent on the 
distribution of the data. 
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The CARMA algorithm (Continuous Association Rule Mining Algorithm), proposed by 
Hidber [10] uses a similar technique, reducing the interval size to 1. More specifically, candidate 
itemsets are generated from every transaction. After reading a transaction, it increments the 
supports of all candidate itemsets contained in that transaction and it generates a new candidate 
itemset contained in that transaction, if all of its subsets are suspected to be relatively frequent 
with respect to the number of transactions that has already been processed. As a consequence, 
CARMA generates a lot more candidate itemsets than DIC or Apriori. Additionally, CARMA 
allows the user to change the minimal support threshold during the execution of the algorithm. 
After the database has been processed once, CARMA is guaranteed to have generated a superset 
of all frequent itemsets relative to some threshold which depends on how the user changed the 
minimal support threshold during its execution. However, when the minimal support threshold 
was kept fixed during the complete execution of the algorithm, at least all frequent itemsets have 
been generated. To determinate exact supports of all generated itemsets, a second scan of the 
database is required. 

5.5. Sampling 
The sampling algorithm, proposed by Toivonen [16], performs at most two scans through the 

database by picking a random sample from the database, then finding all relatively frequent 
patterns in that sample, and then verifying the results with the rest of the database. In the cases 
where the sampling method does not produce all frequent patterns, the missing patterns can be 
found by generating all remaining potentially frequent patterns and verifying their supports during 
a second pass through the database. The probability of such a failure can be kept small by 
decreasing the minimal support threshold. However, for a reasonably small probability of failure, 
the threshold must be drastically decreased, which can cause a combinatorial explosion of the 
number of candidate patterns. 

6. Conclusions 
A lot of people have implemented and compared several algorithms that try to solve the 

frequent itemset mining problem as efficiently as possible. Unfortunately, only a very small 
selection of researchers put the source codes of their algorithms publicly available such that fair 
empirical evaluations and comparisons of their algorithms become very difficult. 

Different implementations of the same algorithms could still result in significantly different 
performance results. Different compilers and different machine architectures sometimes showed 
different behavior for the same algorithms. Also, different kinds of data sets on which the 
algorithms were tested showed remarkable differences in the performance of such algorithms.  

In this paper I presented some algorithms which made a significant contribution to improve 
the efficiency of frequent itemset mining. Also, I propose two implementations for Apriori and 
AprioriTid algorithms. 
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