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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract

Computer based testing can provided knowledge evaluation that is tailored to the specific of each
student with costs and quality performances that exceeds the human based testing. Usually, testing
performed by the humans is a tradeoff between the involved costs and accuracy. Usually, an accurate
test will take longer and if it is performed by a human examiner it will cost more. Also, longer tests
can made the human examiners more prone to be affected by other factors like fatigue that can have
an adverse impact on quality. Computer based testing can permanently adapt to the specific of the
students, it is not affected by human specific factors and has low costs on long run.

1 Introduction

Testing is a major component of the learning process, it allows to evaluate the progress of learning.
Classical testing involves human examiners and it is costly, subjective, error prone and not ready available
in every situation. E-testing systems are permanently available for the students, are not biased by human
factors like fatigue, provides fast and accurate results, the feedback for the students is comprehensive
and a system can cover a large amount of topics being able to replace several human examiners. Also,
e-testing systems provides auto evaluation possibility to the students.

Several major attempts to build Computer Adaptive Testing (CAT) systems can be mentioned. Their
mathematical background is provided by the Item Response Theory (IRT) [1] that is concerned with
the application of mathematical models to data from questionnaires and tests as a basis for measuring
abilities, attitudes, or other variables. It is used for statistical analysis and development of assessments,
often for high importance tests. The main assumption behind IRT is that the probability to obtain a
correct answer to an exercise is a mathematical function of the characteristics of the person who takes
the exercise and the features of the exercise itself.

In [4] it is described a web-based tool to assist teachers and instructors in the assessment process. The
tests are generated according to teachers specifications and are adaptive, that is, the questions are selected
intelligently to fit the students level of knowledge. In this way, are obtained more accurate estimations of
students knowledge with significantly shorter tests. The knowledge level of the student is represented and
measured by a single variable θ. Using as input data a set of responses of the students to a set of questions,
the level of knowledge of the student is estimated using statistical methods. Then, the estimation θ̂ is
used to determine the most informative item to ask next. These steps are repeated until some stopping
criterion is met. Different statistical methods to estimate θ and to select the next best question to
ask give different IRT models that are used in the article. By using applets to present exercises, rich
interactions between students and testing system are possible. Some adaptive test generation methods
involve costly time and human resources for preparation and have complex mathematical formulas. These
methods are available only in large educational institutes and in professional testing centers. In [6], it
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is proposed a CAT method tailored for classrooms and for small business daily routine. The evaluation
problem is considered as a sequential statistical hypothesis test where the hypothesis is the topis is
mastered. As a solution is employed the Sequential Probability Ratio Test (SPRT), originally used in
quality control but later reformulated for use in computerized testing of human examinees. The authors
obtain a system that is easy to implement and does not require a large number of training sessions for
parameter estimation. [7] provides an excellent coverage of computerized adaptive testing (CAT). It
presents all necessary statistic and psihometric concepts and provides also practical foundations. [3] and
[2] discusses the general problematic of adaptive educational systems. [5] presents the main learning
styles that can be encountered at the students and the implications of these styles in building adaptive
learning systems.

This paper formalizes an e-testing system with advanced capabilities that include adaptivity to each
particular student and a database of exercises that is permanently evolving. The classic structure of the
CAT methods is followed: an iterative algorithm where at each round, new exercises are presented to the
examinee. If he performs well, more difficult questions will be presented, otherwise, if the performances
are poor, simpler questions will be used. The proposed formalism is centered around the notion of
difficulty degree and difficulty degree updating. Both an individual exercises and tests have attached
difficulty degrees. The system maintains for each user the most appropriate difficulty degree. Initially,
the difficulty degree for a student can be obtained by data mining methods starting from the difficulty
degrees of similar users on a predefined initial value can be used. After each interaction between the
testing system and user, the difficulty degree is updated. For a specified difficulty degree, the system
will generate every time a different test. Other advanced features of the system include a permanently
evolving exercises database, possibility to include short resumes and full lessons on covered topics and
rich possibilities of interaction with the students. Exercises database evolves by generating new exercises
using predefined patterns and by incorporating exercises proposed by students.

The main differences over the already developed CAT systems are:

• Most CAT methods estimate the knowledge level of the students but not the features of the exercises.
The newly introduced method estimates the characteristics (difficulty) of the exercises and these
estimations are permanently updated. The degree of mastery attained by a student on a topic is
given by the difficulty of the exercises that were successfully resolved.

• Usually, the CAT systems are not able to provide detailed assessments on subtopics, they provide
only a single estimation of the knowledge level. In the presented settings, the topic of the test can
be divided in several subtopics and the degree of mastery on each subtopic is estimated.

• Measures of similarity are used to identify the exercises and students that are closely related. In
this way, the system can transfer the learned knowledge between similar users and similar exercises
and can substitute an exercise with another one.

The next section of the paper presents the theoretical model of the proposed adaptive testing system.
After that, there presented implementation considerations, algorithms and further extensions of the
system capabilities.

2 Specifying adaptive tests

In the following paragraphs, S will represents the set of the students that use the e-learning system and
s ∈ S is a particular student.

Let us consider Ex the set of exercises that are available for the testing and evaluation system. A
test is a subset of Ex, T ⊆ Ex that satisfies a specified set of restrictions. For example, the number
of exercises from the test can be limited by a superior threshold, Card(T ) ≤ M , where Card(.) is the
cardinal function that provides the number of elements from a set and M ∈ IN.

A function Diff : Ex → IR will be used to evaluate the difficulty degree of the exercises from tests,
where for an exercise e ∈ Ex, Diff(e) represents the difficulty of the exercise e. Function Diff can be
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extended to sets of exercises:
Diff : 2Ex → IR

Diff(T ) =
∑
e∈T

Diff(e)

In accordance with the above definition, the difficulty of a test is the sum of the difficulties of the exercises
that appear in the test. Alternately, the difficulty of a test can be the average difficulty of the exercises
that form the test. The definition is as follows:

Diff : 2Ex → IR

Diff(T ) =

∑
e∈T

Diff(e)

Card(T )

The difficulty of a test will be limited by a constant dmax, ∀T,Diff(T ) ≤ dmax. dmax represents the
maximum difficulty for a test.

2.1 Estimating difficulty of the exercises

A first estimation for the difficulty of the exercises will be provided by the human operator,

e ∈ Ex −→
human

Diff(e)

To simplify the task of the human operator, we can suppose that the first estimation of the difficulty
degrees will use only a discrete set of qualitative values like easy, average, high and these values will be
after that converted to numbers.

The first estimation will be subsequently refined using the performances of the students during tests.
Let us consider e ∈ Ex an exercise and Result(e) a measure of the performance of a student for e where

Result(e) =

{ −1 if student failed to resolve the exercise
1 if student succeded to resolve the exercise

Then, a new estimate for the difficulty of e can be obtained as follows:

Diff(e)new ←− Diff(e)old + α(e) ·Result(e) ·Diff(e)old (1)

where α(e) ∈ [0, 1] is a parameter named learning rate for the exercise e. Usually, α(e)→ 0 when t(e) →∞
where t(e) represents the number of appearances in tests for the exercise e (over time the updates of the
difficulty degree for the exercise e should be smaller because the already existent estimation will be
accurate). A common formula for the learning rate is

α(e) =
α0(e)

1 + t(e)
TE

where α0(e) and TE are constants.

2.2 Similarity measure between exercises

For adaptive tests generation it is important to establish how similar are two exercises. For example, if
a student fails to resolve an exercise, similar exercises can be proposed to him in the subsequent tests to
accurately measure the level of knowledge of the student in the area. Moreover, with a similarity measure
between exercises, different tests can be generated for different students, tests that cover same topics and
have similar levels of difficulty. In this way, the evaluation process will be consistent and in same time
the students will have no possibility to know what exercises will appear in a test.

A measure of the distance between two exercises is introduced as:

d : Ex× Ex → IR+

with the following properties:
d(e1, e2) ≥ 0
d(e, e) = 0
d(e1, e2) ≤ d(e1, e3) + d(e3, e2)
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2.3 Classes of exercises

A category or a class of exercises is a subset of the full set of exercises C ⊆ Ex that includes exercises
with similar properties. Let us denote by C = C1, ..., Ck the set of the all categories that are available for
the system. It is possible that same exercise e to apart to two or more categories. This means that two
categories can have a non empty intersection Ci ∩ Cj �= ∅. We will suppose that an exercise e ∈ Ex will
apart to at least one category, and, consequently,

k⋃
i=1

Ci = Ex.

Let us suppose that a distance measure can be devised between categories:

dc : C × C → IR+,

where dc(Ci, Cj) represents how different are the categories Ci and Cj . In these conditions, a distance
between exercises can be devised based on the distance between categories:

d(e1, e2) = max
c1, c2

e1 ∈ C1

e2 ∈ C2

dc(C1, C2) (2)

2.4 Generating adaptive tests

Let us consider T ⊆ Ex a test that was performed by a student s and Success(T, s) ⊆ T and
Failure(T, s) ⊆ T represent the exercises that were successfully resolved and, respectively, failed. The
level of knowledge of the student s assessed by the test will be defined as:

TrainingLevel(T, s) =
Diff(Success(T, s))

Diff(T )
∈ [0, 1]. (3)

Otherwise stated, the training level of a student s regarding to a test T is the ration between the
complexity of the exercises that were correctly resolved and the total complexity of the test.

The difficulty degree of the next test can be established in accordance with the algorithm 1.

Algorithm 1: The algorithm used to adjust the difficulty degree of the tests in accordance with
the student’s performances.

Selecting the difficulty degree of the next test()
(1) if TrainingLevel(T, s) > β1

(2) increase the difficulty level of the next test
(3) else if TrainingLevel(T, s) < β2

(4) decrease the difficulty level of the next test
(5) else

(6) maintain the current difficulty level

Here, β1 and β2 are two constant thresholds that are used to trigger the update of the test’s difficulty
level for a student.

Difficulty level adjustment can be also done on each category. Let us define

TrainingLevel(T, s, C) =
Diff(Success(T, s) ∩ C)

Diff(T ∩ C)
∈ [0, 1]. (4)

to be the knowledge level of the student s ∈ S for the category C ∈ C assest by the test T ⊆ Ex. The
difficulty of the exercises selected from the category C can be updated using the mentioned algorithm.
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2.5 Updating the difficulty degree

The algorithm from previous section involves update operations on the difficulty degree of the entire test
or of a specified category. These update operations will be performed as is prescribed by the following
guidelines. Let us consider dmin the minimum degree of difficulty and dmax the maximum degree of
difficulty, and, dcrt the current one, dmin ≤ dcrt ≤ dmax. Three situations are possible:

• Difficulty degree should be increased. Then, the next difficulty will be selected using a Gaussian
distribution with mean (1− γ)dcrt + γ · dmax and variance 1. Probability density of this function is
represented in the figure 1.

Figure 1: Density function for the Gaussian probability distribution used to select the newly increased
difficulty degree with γ = 0.5.

• Difficulty degree should be decreased. Then, the next difficulty will be selected using a Gaussian
distribution with mean (1− γ)dcrt + γ · dmin and variance 1. The process is presented in the figure
2

Figure 2: Density function for the Gaussian probability distribution used to select the newly decreased
difficulty degree with γ = 0.5.

• Difficulty degree should be maintained. Then, the next difficulty will be selected using a Gaussian
distribution with mean dcrt and variance 1.

Here, γ ∈ [0, 1] is a parameter named update rate. γ can be a constant, for example, γ = 0.5, or, γ can
have decreasing values, γ → 0 when the number of difficulty updates goes to ∞.

2.6 Generating a test with a specified difficulty

Let us consider C(T ) ⊆ C the categories of exercises that will be considered for the test. If Card(C(T )) = 1
then the test will involve only one topic (category). If C(T ) = C then the test will involve all topics that
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are available for the system. Let us denote by

P (C) =
Card(C)∑

Ci∈C(T )

Card(Ci)
, C ∈ C(T ). (5)

P (C) ∈ [0, 1], ∀C ∈ C(T ) represents a discrete probability distribution over the set C(T ) of the categories
(topics) involved in the test.

If the dcrt is the difficulty degree of the test that should be constructed, then the algorithm 2 is used
to achieve the desired result.

Algorithm 2: The algorithm used to create a test with a specific difficulty degree. The iterative
procedure selects at each step a category and, then, an exercise from that category.

Constructing a test with a specified difficulty degree(dcrt)
(1) T ← ∅ (the initial test is empty)
(2) while true
(3) Select the category C ∈ C(T ) of the exercise that will be added to the test

in accordance with the probability distribution P (C) (the categories with a
larger number of exercises will have a greater probability to be selected).

(4) Select e ∈ C an exercise in accordance with the target difficulty dcrt and with
the current difficulty of the test Diff(T ).

(5) T ← T ∪ {e} (the exercise is added to the test).
(6) if StopConditions(T, dcrt) are satisfied
(7) return T

When an exercise is to be selected from a category in order to be added at a test, there are two
situations:

• The difficulty of the test is considered the sum of the difficulties of the exercises from test Diff(T ) =∑
e∈T

Diff(e). A current difficulty level dcrt(C) will be maintained for each category C ∈ C(T ). The

exercise will be selected using a Gaussian distribution with the mean dcrt(C) and variance 1. In
this way, all exercises from the category have a chance to be selected and the exercises with the
difficulty around dcrt(C) are preferred. Initially, the intra category difficulty dcrt(C) should be
low or medium low, because, pedagogy indicates that is recommendable to start with relatively
low complexity exercises. dcrt(C) will be updated after each test performed by the student in
accordance with his results.

• The difficulty of the test is the average of the difficulties of the exercises from test Diff(T ) =∑
e∈T

Diff(e)

Card(T ) . In this case, the exercise will be selected using a Gaussian distribution with the mean

dcrt and the variance 1.

To define StopConditions(T, dcrt) same situations as above should be considered:

• The difficulty of the test is the sum of difficulties of the exercises that form the test. Then

StopConditions(T, dcrt) =

{
true if Diff(T ) ≥ dcrt

false if Diff(T ) < dcrt

Otherwise stated, test building process stops when the difficulty of the current test exceeds the target
difficulty dcrt. The employed algorithm is similar with the algorithm for the knapsack problem,
exercises are added until the target difficulty, which is the capacity of the knapsack, is exceeded.

• Test difficulty is the average of the exercises difficulties. In these conditions, test building pro-
cess stops when some test admissibility conditions are satisfied. Examples of such admissibility
conditions are:
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– Test should have at least Min exercises, Card(T ) ≥Min.

– A test is admissible if it includes an exercise for each category, ∀C ∈ C(T ), ∃e ∈ T such that
e ∈ C.

2.7 Adaptive test generation

Adaptive test procedure for a student is described in the algorithm 3 and it synthesizes the theoretical
developments from the previous sections.

Algorithm 3: The adaptive testing procedure. At each step a test is generated in accordance
with the recommended difficulty level for the student. The test is applied and after that the difficulty
level is updated in accordance with the test results.

Adaptive test procedure for a student(s ∈ S)
(1) dcrt ← dinit(s) the initial difficulty level for the student s
(2) while stop conditions not satisfied for s
(3) generate a test with the difficulty dcrt

(4) apply the test to student and record the results
(5) update the difficulty level dcrt in accordance with the results.

Regarding the stop conditions for a student s several scenarios can be considered:

• The student s uses the system on regular basis to improve or maintain his knowledge level. In this
case, the testing loop can continue forever. The student should have the possibility to reset the
adaptive system in order to start the training again from the initial conditions.

• The testing system is used by an institution to evaluate the knowledge level of the student s. In
this case, the system should stop when the variance on the last K tests is under a threshold δ(K).
A low variance means that the difficulty level, which is optimal for the student s, was found and
the system is stabilizing around this level. In this case, the average difficulty level on the last K
tests can be used as a measure of the knowledge for s. A limit of the number of tests that can
be applied to s, MaxTestsNum can be specified in this situation to cope with the cases when the
difficulty level has strong oscilations for s.

3 Implementing testing systems with advanced capabilities

In this section, it will be discussed implementation details for the previously presented theoretical model
and other features that can improve the e-learning system.

3.1 Personalizing the system for each student

Our system should consider each student as an individual entity with specific requirements. In order to
do that, the system should store data to be able to differentiate between students. Maintained data will
include:

• Personal information about student. Ideally, this information should allow to identify the similar
students.

• Information about the performed tests. Minimally, this information will consist from the success
percentages obtained at the tests. If the storage possibilities allow, the information can also include
even the exercises that composed the tests, at the results for each exercise.

• Information on the evolution of the difficulty degree dcrt of the administrated tests. The intra
category difficulty degree evolution dcrt(C) can be also included for each category C ∈ C.
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3.2 Providing extensive feedback to the students

Students should receive complete statistics and graphical representations on their tests’ performances.
The evolution of the tests’ difficultly degree should be also included. For each failure, the student will
receive full explications on the topic.

3.3 Passing from a testing system to a learning system

The system can be extended with short summaries and even with full lessons on the covered topics.
Different techniques can be used to ensure that the students really read and understand the presented
information. A such technique can be for example to impose a minimum time of presentation of the
information on screen. Also, each test can be prefaced by the summaries of the covered topics. Also,
access to some tests can be allowed only to the users that completed a specified set of lessons and/or
summaries.

3.4 A permanently evolving system driven by students

For some types of systems and students, it can be considered the possibility that the exercise database to
be extended with the exercises proposed by examinees. The similarity measure between exercises can be
used to automatically classify into categories the newly added exercises. Of course, the quality of these
exercises is a concern and should be carefully assessed. Several methods to ensure the quality can be
considered:

• All new exercises will be moderated by human administrators.

• Only the students with high performances can propose new exercises.

• Feedback from other users will be employed to measure the quality of the exercises.

• Social trust measuring methods can be employed, and only the trusted users can extend the exercise
database.

3.5 Measuring the quality of the proposed tests

The system can request to users to provide feedback information about the quality of the exercises from
tests and about the overall quality of the tests. The requested feedback should be carefully minimized in
order to not place an unpleasant burden on the students. The exercises that in average have on long run
low quality marks will be removed from the system.

3.6 Adapting to the learning styles of the students

The proposed model does not impose any restriction on the modality of presentation for the exercises.
However, it can be supposed that the presentation with several alternate answers will predominate. Our
system can accommodate variants of presentations that are predominant visual, auditive, practical or
combinations between them. These styles can be easily applied to lessons and resumes but also can
appear in the testing procedure. The system should establish the main learning style of a student using
an initial set of questions or based on the student performances on different types of presentations. Ideally,
the system should use for each student a variant of presentation that is suited to the student learning
style.

4 Conclusion

The paper proposes a testing system that adapts the difficulty of the tests to the training level of the
students. The system is highly extensive, it can adapt several learning styles, can be enriched with
short summaries and full lessons and has an exercise database that is permanently evolving. The system
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always will present different tests to students even the difficulty level has not changed. The system is
configurable, both administrators and students can decide how testing is performed and in particular
when the testing procedure is finished. Future improvements will include:

• Automatic generation of exercises on specified topics.

• Automatic generation of summaries from full lessons.

• Rich interaction possibilities for the students (hyper-media).

• Improved data mining procedures to identify commonalities between students and exercises.

• Day time usage statistics to identify patterns in the results obtained by students.
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