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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Consider the problem:

−y′′(t) + q(t)y(t) = r(t), t ∈ [a, b]

y(c) = α

y(d) = β, c, d ∈ (a, b).

The aim of this paper is to present two approximate solutions of this problem based on B-splines and first kind
Chebyshev polynomials, respectively. The first solution uses a mesh based on Legendre points, while the second
uses a Chebyshev-Lobatto mesh. Using computer algebra techniques and a Maple implementation, we obtain
analytical expression of the approximations and give examples. Chebyshev method has a smaller error, but for
large number of mesh points the B-spline method is faster and requires less memory.

1 Introduction

Consider the problem:

−y′′(t) + q(t)y(t) = r(t), t ∈ [a, b] (1)

y(d) = α (2)

y(e) = β, d, e ∈ (a, b), d < e. (3)

where q, r ∈ C[a, b], α, β ∈ R. This is not a two-point boundary value problem, since d, e ∈ (a, b).
If the solution of the two-point boundary value problem

−y′′(t) + q(t)y(t) = r(t), t ∈ [d, e]

y(d) = α (4)

y(e) = β,

exists and it is unique, then the requirement y ∈ C2[a, b] assures the existence and the uniqueness of (1)+(2)+(3).

We have two initial value problems on [a, d] and [e, b], respectively, and the existence and the uniqueness for

(4) assure existence and uniqueness of these problems. It is possible to solve this problem by dividing it into the

three above-mentioned problems and to solve each of these problem separately, but we are interested to a unitary

approach that solve it as a whole.

In 1966, two researchers from Tiberiu Popoviciu Institute of Romanian Academy, Cluj-Napoca, Dumitru Ripi-
anu and Oleg Arama published a paper on a polylocal problem, see [9].
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2 Principles of the method

The implementation is inspired from [4, 5].

2.1 B-spline method

Our first method is based on collocation with nonuniform cubic B-splines [2, 10]. For properties of B-spline

and basic algorithms see [5].

Consider the mesh (see [1])

Δ : a = x0 < x1 < · · · < xm < xm+1 = b, (5)

and the step sizes

hi := xi+1 − xi, i = 0, . . . , m.

Within each subinterval we insert k points

0 ≤ ρ1 < ρ2 < · · · < ρk ≤ 1,

which are the roots of the kth Legendre’s orthogonal polynomial on [0, 1] [6, 8].

Finally, the mesh has the form

ξi,j := xi + hiρj , j = 1, . . . , k, i = 0, . . . , m.

The number of mesh points is now N = (m + 1)k.

We shall choose the basis such that the following conditions hold:

• the solution verifies the differential equation (1) at ξi,j ;

• the solution verifies the conditions (2), (3).

We need a basis having N + 2 cubic B-spline functions.

One renumbers the points such that the first point is x0 and the last is xn+1.

In order to impose the fulfillment of (1) at a and b we complete the mesh with points x−k, x−k+1, . . . , x−1 and

xn+2, xn+3, . . . , xn+k+1.

The form of solution is

y(t) =

n+2∑
i=−1

biBi(t), (6)

where Bi(t) is the B-spline with knots xk−2, xk−1, xk, xk+1, xk+2.

The conditions on solution yield a linear system with n + 4 equations and n + 4 unknowns (the coefficients bi,

i = −1, . . . , n + 2).

The system matrix is banded with at most 4 nonzero elements on each line (3 nonzero at each mesh point and

four at d and e).

2.2 Chebyshev method

Our second method is based on first kind Chebyshev polynomials [6, 8]. We consider the mesh

b− a

2
cos

kπ

n
+

a + b

2
, k = 0, . . . , n (7)

(the extremes of Chebyshev #1 polynomials, or equivalently the roots of Chebyshev #2 polynomials) completed

with inner points c and d. The form of the solution is

y(t) =
n+1∑
i=0

ciTi(t); (8)

where Ti(t) is the k-th degree first kind Chebyshev polynomial on interval [a, b]. As in the previous section, the

fulfillment of (1), (2) and (3) leads us to a system of n + 2 equations and n + 2 unknowns (the coefficients ci,

i = 0, . . . , n + 1). This time the matrix is dense.
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3 Maple implementation

We implement our ideas in Maple 10. For necessary details on Maple see [7].

Both methods return the approximation in analytic form.

3.1 B-spline method

The basic functions are computed using the function BSpline of the package CurveFitting. The

B-spline basis is obtained through Maple sequence
> S:=(x,u,k)->eval(BSpline(4,t,
> knots=[seq(u[i],i=k-2..k+2)]),
> t=x):

S(x,u,k) computes the cubic B-spline in variable x,

with knots u[k-2], . . . , u[k+2].

The procedure genspline computes the B-spline solution. It accepts the mesh x, the number of points n,

the functions q and r, the points d, e and the values at d and e, alpha and beta, respectively. It returns the

solution y, given by (6). The matrix of the system and the right-hand side vector are constructed element by

element and the solution is computed using the function LinearSolve from LinearAlgebra package.

This is a fast and flexible solution, and allows the selection of the solution method and gaining additional

information, like condition number. Here is the Maple code.
> genspline:=proc(x,n,q,r,d,e,
> alpha,beta)
> local k, i, A, y, poze, pozd, ii,p,xe,xd, Y;
> global S, b;
> A:=Matrix(n+4,n+4); y:=Vector(n+4):
> b:=Vector(n+4):
> ii:=1;
> for i from 0 to n+1 do
> for k from max(i-1,-1) to i+1 do
> A[ii,k+2]:=(-eval(diff(S(t,x,k),
> t$2), t=x[i])+q(x[i])*
> eval(S(t,x,k),t=x[i]));
> end do:
> y[ii]:=r(x[i]);
> if (x[i]<d and x[i+1]>d) then
> ii:=ii+1; pozd:=ii; xd:=i;
> end if:
> if (x[i]<e and x[i+1]>e) then
> ii:=ii+1; poze:=ii; xe:=i;
> end if:
> ii:=ii+1;
> end do:
> p:=xd;
> for k from p-1 to p+2 do
> A[pozd,k+2]:=eval(S(t,x,k),t=d);
> end do;
> y[pozd]:=alpha;
> p:=xe;
> for k from p-1 to p+2 do
> A[poze,k+2]:=eval(S(t,x,k),t=e);
> end do;
> y[poze]:=beta;
> b:=LinearSolve(A,y);
> Y:=0:
> for k from -1 to n+2 do
> Y:=Y+b[k+2]*S(t,x,k):
> end do:
> return Y:
> end proc:
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The procedure genspline accepts the mesh given in array form. The procedure gendivLeg generates

the mesh as shown in Section 2.1. It calls the procedure genpoints. It computes the Legendre polyno-

mial, solve it, and generates mesh points using an affine transform. The Legendre polynomials are gener-

ated using the orthopoly package, and their roots are obtained via solve function. Here is the code for

genpoints:

> genpoints:=proc(a,b,N,k)
> local L,i,j,xu,xc,pol,pol2,sol,
> h,nL,x;
> L:=[a];
> h:=(b-a)/(N+1);
> xc:=a-h; pol:=P(k,t);
> pol2:=expand(subs(t=2*x-1,pol));
> sol:=fsolve(pol2);
> for i from 0 to N+2 do
> xu:=xc+h;
> for j from 1 to k do
> L:=[op(L),xc+(xu-xc)*sol[j]];
> end do;
> xc:=xu;
> end do;
> L:=[op(L),b];
> L:=sort(L);
> return L;
> end proc:

The code for gendivLeg closes the section.

> gendivLeg:=proc(a,b,n,k)
> local h,x,Y,L,nn,j:
> L:=genpoints(a,b,n,k);
> L:=convert(L,rational,exact);
> nn:=nops(L)- 2*k;
> x:=Array(-k..nn+k-1,L):
> return x;
> end proc:

3.2 Chebyshev method

The Chebyshev polynomials are generated via the orthopoly package. The Maple sequence

> S:=(x,k,a,b)->T(k,
> ((b-a)*x+a+b)/2):

computes the k-th degree Chebyshev polynomial on interval [a, b]. The following Maple procedure genceb
is the analogous of genspline. It uses solve to compute the Chebyshev coefficients.
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> genceb:=proc(x,n,q,r,c0,d0,
> alpha,beta)
> local k, ecY, ecd, C, h, Y, c, a, b;
> global S;
> a:=x[0]; b:=x[n-1];
> Y:=0;
> for k from 0 to n+1 do
> Y:=Y+c[k]*S(t,k,a,b);
> end do;
> Y:=simplify(Y);
> ecY:=-diff(Y,t$2)+q(t)*Y=r(t):
> ecd:=Array(0..n+1);
> for k from 0 to n-1 do
> ecd[k]:=eval(ecY,t=x[k]):
> end do;
> ecd[n]:=eval(Y,t=c0)=alpha:
> ecd[n+1]:=eval(Y,t=d0)=beta:
> C:=solve({seq(ecd[k],k=0..n+1)},
> [seq(c[k],k=0..n+1)]);
> assign(C):
> return Y:
> end proc:

The mesh points are the roots of the n-th degree second kind Chebyshev polynomials (formula (7)) and the

points c and d.

4 Numerical examples

We present two examples: one with a nonoscillating solution and the other with oscillating solution. A problem

with a nonoscillating solution is simple and does not require a large computational effort. A problem with an

oscillating solution is harder, and requires a mesh with a large number of points. The methods do not depend on

conditions on q(x). We solved our examples using both methods. For each example and method we plot the exact

and the approximate solution and generate the execution profile (with the pair profile - showprofile). The

first example is from [3, page 560]

−y′′ − y = x, x ∈ [0, 1]

y

(
1

6

)
= −1

6

−6 sin 1
6 + sin 1

sin 1
,

y

(
3

4

)
= −1

4

−4 sin 3
4 + 3 sin 1

sin 1
.

The exact solution is Z(t) = −− sin(t)+t sin 1
sin 1 , and we computed it using dsolve. We chose n = 10 for both

methods and k = 3 for the first method. Figure 1 shows the exact and the approximate solution computed using

the first method. The error plot in a semilogarithmic scale is given in Figure 2.

The corresponding graphs for Chebyshev methods are illustrated in Figures 3 and 4.
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Exact and approximate solution
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Figure 1. The graph of exact and approximate solution, nonoscillating problem, B-spline method,
n = 10, k = 3

Approximation error
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Figure 2. Error plot, nonoscillating problem, B-spline method, n = 10, k = 3

Exact&Approx.Solution;n=10
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Figure 3. Exact and approximate solution, nonoscillating problem,Chebyshev method,n = 10
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Approximation error
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Figure 4. Error plot, nonoscillating problem, Chebyshev method, n = 10

Here are the profiles for the procedures in the case of nonoscillating problem. The function showprofile for

the B-spline method gives the following results:

function depth calls time time% bytes bytes%
---------------------------------------------------------------------------
genspline 1 1 2.496 100.00 92768440 100.00
---------------------------------------------------------------------------
total: 1 1 2.496 100.00 92768440 100.00

The profile for Chebyshev method is:

function depth calls time time% bytes bytes%
---------------------------------------------------------------------------
genceb 1 1 0.249 100.00 9291004 100.00
---------------------------------------------------------------------------
total: 1 1 0.249 100.00 9291004 100.00

The second example has an oscillating solution:

−y′′ − 243y = x, x ∈ [0, 1]

y

(
1

6

)
= − 1

1458

−6 sin 3
2

√
3 + sin 9

√
3

sin 9
√

3

y

(
3

4

)
= − 1

972

−4 sin 27
4

√
3 + 3 sin 9

√
3

sin 9
√

3
.

The exact solution, provided by dsolve is Z(t) = − 1
243

− sin 9
√

3t+t sin 9
√

3
sin 9

√
3

. We chose n = 100 for both

methods and k = 3 for the first method. Figure 5 gives the graph of exact and approximate solution for the

oscillating problem. The error plot appear in Figure 6. The corresponding graphs for Chebyshev methods are

given in Figures 7 and 8, respectively.
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Exact and approximate solution
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Figure 5. Exact and approximate solution, oscillating problem, B-spline method, n = 100, k = 3
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Figure 6. Error plot, oscillating problem, B-spline method, n = 100, k = 3

Exact&Approx.Solution;n=100

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.2 0.4 0.6 0.8 1
t

Figure 7. Exact and approximate solution, oscillating problem, Chebyshev method, n = 100
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Approximation error
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Figure 8. Error plot, oscillating problem, Chebyshev method, n = 100

Here are the profiles for the procedures in the case of oscillating problem.

function depth calls time time% bytes bytes%
---------------------------------------------------------------------------
genspline 1 1 36.691 100.00 990061444 100.00
---------------------------------------------------------------------------
total: 1 1 36.691 100.00 990061444 100.00

function depth calls time time% bytes bytes%
---------------------------------------------------------------------------
genceb 1 1 174.814 100.00 4365866236 100.00
---------------------------------------------------------------------------
total: 1 1 174.814 100.00 4365866236 100.00

5 Conclusions

The Chebyshev method has a smaller error (see error plots, Figures 2, 4, 6, 8). For the nonoscillating

solution and a mesh with a small number of subintervals Chebyshev method is faster and requires less memory. If

the number of points increases the B-spline method is faster and requires less memory. The reason is that for the

B-spline method the matrix of the system that provides the coefficients is a band matrix with at most 4 nonzero

elements per line, while for Chebyshev method the matrix is dense. The example with oscillating solution supports

this conclusion.

Our approach based on computer algebra has the following advantages:

• The choice of mesh points is arbitrary.

• The degree of Legendre polynomial can be changed.

• We need not bother with differentiation, equation building, ordering and so on.

• The analytic form of the solution allow to compute the approximation at any point, to plot it and to use it

further as input for other problems.
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