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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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This particular class of Petri Net’s the automats modeling and finite sequential 

processes. Operation of a state machine simulating a multitude of independent processes 

which unfortunately can not be synchronized in this particular class.  

1. PRELIMINARY NOTIONS  

In this section  we present some concepts and theoretical results of the theory of Petri 

networks wich are required to demonstrate results that determine the class type  state  machine 

of Petri networks. 

DEFINITION 1.1 [3] Be ),,,( postpreTS=Σ a Petri net and ,Pr e  ,Post  two finite 

matrix size respectively constructed as follows: 
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a) We call the matrix T - symmetric conflict matrix eeCT
t

PrPr •= ,  of size TT × .  

b) We call S-matrix symmetric conflict matrix PostPostCS
t
•=

t
CS Post Post= ⋅ , of size 

SS ×  .  

c) We call T-matrix confluence symmetric matrix 
t

PostPostTC •= , of size TT × .  

d) We call S-matrix confluence of symmetric matrix 
t

eeSC PrPr •= , of size SS × .  

e) We call the matrix T - precedence symmetric matrix ePostTP Pr•= , of size TT × .  

f) We call the matrix S - precedence symetric matrix PosteTP •= Pr , of size SS × . 
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PROPOSITION 1.2   [3]  

Be a Σ  finite Petri net, CT, CS, TC, SC, TP, SP conflict matrix, precedence matrix,  

respectively confluence matrix  defined above and  Sss ∈, , Ttt ∈, . Then : 

a) ttttCT
•• ∩=),( , and tttCT •=),(  

b) ssssCS
•• ∩=),( ,  and sstCS •=),(  

c) 
•• ∩= ttttTC ),( ,  and •= tttTC ),(  

d) 
•• ∩= ssssSC ),( , and •= sssSC ),(  

e), ttttTP
•• ∩=),( , and  ),( ttTP  = number of loops formed by t and a location to some.  

f), ssssSP
•• ∩=),( , and ),( ssSP = number of loops formed by s and a transition to some. 

DEFINITION 1.3 [5]  

 Be MΣ = (S, T, Pre, Post) a marked Petri net, and A( MΣ , 0μ ) multitude of 

accessible marks of the network.  It's called the graph of marks the digraph accessible labeled: 

GA(Σ) = (A( MΣ , 0μ ) , T, Γ ) where for label ∈∀μ  A( MΣ , 0μ ) , Γμ= { μ’∈  A( MΣ , 0μ ) | ∃ t∈T so 

that μ[ t > μ’ }, and T is the multitude of labels for  the digraph arcs.  

The arch μ [> μ 't is labeled with the t ⇔  μ[ t > μ’. It notes that GA(Σ) can be finite or 

infinite as so as  A( MΣ , 0μ ) is finite or not. Because from μ0 we can reach to all the markings 

of the A( MΣ , 0μ ) ⇒ GA(Σ) is a related digraph. 

DEFINITION 1.4 [5]  

Let be ∑M=(∑, μ0) a Petri net marked and t∈T a transition of the network.  

a) We say that transition t it is cvasiviable  ⇔  ∃μ∈A(∑M) so that  μ[t>. 

b) Petri net ∑M it is cvasiviable ⇔ ∀ t∈T,  transition t it is cvasiviable.  

c) We say that transition t it is viable ⇔ ∀μ∈ A(∑M), transition t it is cvasiviable (∑ , μ) 

d) Petri net ∑M it is viable ⇔ ∀ t∈T, transition t it is viable.  

e) Petri net it is viable ⇔ ∃μ∈N|S| so that the network (∑ , μ) to be viable. 
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 Cvasiable of a transition that gives the opportunity to occur at least once and so that 

the operation for which is represented  in the system modeled is not important in functioning 

of the system. The viability of a transition expresses that in any moment in the evolution of 

the transition can occur to a specific mark which is a characteristic of systems with continuous 

operation and for which a   unavailability of a operation  corresponds to a feather (error) of  

the system.  

DEFINITION 1.5 [5]  

 Let be ∑M = (S,T,Pre,Post,μ0) a Petri net marked and s∈S a given location.  

a) We say that s it is k-bordered (k∈N*) ⇔ ∀μ∈ A(∑M) we have μ(s)<=k.  

For k = 1 we say that s it is binary.  

We say that s is bordered ⇔ ∃ k∈N* that s it is k-bordered.  

b) ∑M is bordered ⇔  ∀s∈S, ∃ k∈N* that s it is k-bordered.  

c) A Petri net ∑ is bordered ⇔ ∀μ∈N|S| , the marked network  ∑M  = (∑,μ)  it is bordered.  

d) We say that ∑ it is sure if throughout its evolution any location of the network  it is binary. 

PROPOSITION 1.6 [5]  

For any σ∈T*  ∃ μ∈N|S| marking a network so that μ[σ〉. 

PROPOSITION 1.7 [5]  

Let be ∑M=(∑, μ0) a Petri net marked and t∈T a transition of his life. The transiton t is 

viable ⇔ ∀μ∈ A(∑M) ∃μ′∈ A(∑, μ) and  ∃ σ∈T* repetitive sequence containing t and such 

that μ′[σ>. 

 

2. THEORETICAL CONSIDERATIONS  

 

DEFINITION 2.1 [1] Let Σ = (S, T, Pre, Post) a PT - Petri net {0,1} - value.  

a) a) We say that Σ is the state machine Tt∈∀⇔ we have 1== •• tt  (equivalent to 

Tt∈∀ , ∑
∈

=
Ss

tse 1),(Pr  and ∑
∈

=
Ss

tsPost 1),( ).  

b) We say that the machine state Σ is monomarked ⇔ for 0μ∀   initial marking Ss∈∃! so that 

1)(0 =sμ . 
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If an initial marking 0μ  is allowed a single mark on a particular network location, then 

the input transitions that have concession at this location 0μ  and may produce one of them. 

Thus, the mark will move from location to location designating the current state of the 

machine. If permitted in 0μ  several grades, then by producing the transition grid, these brands 

moving independently simulating a variety of independent processes on the same program. 

State machines but do not allow the synchronization of these processes. 

OBSERVATION 2.2.  

Any scheme logic   associated  with a program    is transformed into a PT-network 

(0,1)-valuated. Indeed, let P a program (a set of instructions that can be executed in a certain 

order) and let be SP = (B, Q) a logical schem associated with a logical layout program, when 

B it is a multitude of blocks for  scheme logical , and Q it is a multitude of its arcs.  

We associate to location P a PT-net ∑ P = (S, T, Pre, Post) as follows: 

Each location corresponds to an arch from  Q or a lot of arcs with  same node terminal 

, each transition corresponds to a block b  from  B if it is not test block (block predicative) or 

transitions k  from  T correspond to a test block b from B, where k it is aritate for b- and Pre, 

Post:S×T→N are given by: 

⎩
⎨
⎧ =∈∃

=
otherwise

ttsTt
tse

,0
),(,,1

),(Pr
''

 
(t it is final node of s)

⎩
⎨
⎧

=
otherwise

tsPost
,0
,1

),(
t it is intial node of 

arc s
 

Obtain such a  PT net  in wich transitions  correspond to the  scheme blocks , and the 

locations correspond arcs of a logical scheme. If ∑P
 is a state machine monomarked,  then 

by  producing the transitions,  mark is moving from location to location and indicating a  

instruction  wich to be executed next . 

PROPOSITION 2.3 [1]  

Let be ∑ a state machine monomarked and hard-related, 0μ an initial marking, the 

G∑=(S∪T,Γ ) associated the digraph and his ∑ and GA GA(∑)=(A(∑, μ ), T, Γ ) graph 

marking accessible ∑ 's definition given in 2.2. Then GA(∑) and T-labeled graph : 

G=(S, T, 2Γ ) are isomorphic. 
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PROOF 

Because ∑ it is monomark  by producing the transitions, the unique mark of the  

network  transitions moving from  location to location. How 1t • = for Tt∈∀ result that 

∑ ∑∈∀ ),(),,( 0 μμμ A it is monomark and for 1t • = , Tt∈∀  and ∑ it is hard-related result 

that Tt∈∀  can producing at a specific marker ( to which the only marked location, is it  his 

entry  ) and that the number of different ∑ marking is equal to the number of locations in S. 

Thus SA =∑ ),( 0μ  and so there is a correlation between S and A ∑ ),( 0μ  which 

associating  biunivoc  a marker sμ of a location s and is it given  by 
⎩
⎨
⎧

≠
=

=
ss
ss

ss ',0
',1

)'(μ . 

Since }[,|),({ 0 μμμμμ >∈∃∈=Γ ∑ tTtA  we have that ),(, 0∑∈∀ μμμ A  we have  

TtSss ∈∃∈∃⇔Γ∈ ,,μμ  that sμμ =  
s

μ μ=  şi sst ss ,[ ∃⇔> μμ  şi Tt∈∃  that ts =Γ )(  

and st =Γ Sss ∈∃⇔ ,  şi Tt∈∃  that Sssssts ∈∃⇔Γ=ΓΓ=Γ= ,)( 2  that ss 2Γ∈ . It 
follows that ),( μμ∀  arch in GA(∑), ),( ss∃  arch in G corresponding from bijective above 
him ),( μμ .  
Conversely, it is obvious because ),( ss  the arch in G, take the ( , )s sμ μ  arch in GA(∑). 
 

COROLLARY 2.4 

Let be ∑ a state machine monomarked with n = | S | location and marking μ some of it. 

Then the number of the accessible markings is finished, and in addition  nA ≤∑ ),( 0μ . 

PROOF. 

Obviously by moving a marking unique  from location to location we obtained new 

markings of the network, in which one location is marked. So each marker has a single 

element 1 and 0 the rest,  and  this element can occupy  at most n-positions,  can be obtained 

at most  n-different markings. The maximum number is reached when the state machine it is   

hard-connex, because of the isomorphism established in the previous theorem. 

PROPOSITION 2.5. 

Let be ∑ a machine state monomarked and hard-connex. Then ∑ is it a PT-net  viable 

and sure. 
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PROOF. 

 Let be 0μ∀ a initial marker of a ∑. We will show that ),( 0∑ μ  it is viable and sure. 

Since ∑ it is hard-connex  ⇒  the graph G=(S, T, 2Γ ) it is hard-connex and according to 

previous  2.5, the graph of the marks accessible GA(∑) it is hard-connex, which means 
∗∈∃∈∀ ∑ TA σμμμ ),,(, 0  that μσμ >[ . 

It follows that after a certain sequence of procedures  is it possible re-obtaining any 

marking ),( 0∑∈ μμ A . How in a state machine Tt∈∀  is permitted at a marker μ  (ie one 

that assigns 1 only its entry) and how μ  to obtain the sequence σ  what containing t, so a 

repetitive sequence, resulting in 1.7 sentence that it is viable. ∑ therefore follows that  is it 

viable. 

Fact that ∑ it is sure resulting from definition of a ∑ namely from ∑
∈

=
Ss

tsPost 1),(  we 

obtain that Ss∈∃! so that  Post(s, t)=1. In other words, by producing t  marking unique  of the 

network is transformed from entry of t of  exit its s ie and ),( 0∑∈∀ μμ A şi Ss∈∀  we have 

.1)( ≤sμ  

THE EXAMPLE 2.6.  

∑ Petri net of figure 1 is a state machine with initial marking t)100(0 =μ .  

It is noted that: ta )010([ 10 => μμ                1 
tb )001([ 21 => μμ  

0212 [,[ μμμμ >> dc                                  a  

 

            2 

               b 

           3     

    

        c  Fig.1. State machine  d   

 

So : ( ) ( )2100 ,,, μμμμ =ΣA  

 

      187



On Particular Class of Location-Transition Petri Nets: State Machine 

�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The graph's accessible markings it is  in the figure 2 a) and graph G=(A, T, 2Γ ) it is in 

figure 2 b). 

 
      a                    b                                                     a                      b 
 

0μ               1μ                 2μ                           1                 2                 3 
 

a ) the graph's accessible markings  b ) graph G=(A, T, 2Γ ) 

    Fig. 2. The isomorphic graphs 

Obviously the two graphs are isomorphic and ∑ is viable and sure.  

Follows a characterization theorem of the machine state  by a matrix  T-conflict and T-

confluence defined in 1.1. 

THEOREM 2.7 Let be ∑= (S, T, Pre, Post) a PT-Petri network (0, 1)-value and CS, 

SC, CT, TC matricx S-conflict, S-confuence, T-conflict, T-confluence defined in 1.1. Then:  

a) ∑ is it a machine state ⇔ CT(t, t)=1,TC(t, t)=1 for Tt∈∀ for (have all elements of the 

diagonally 1) 

b) If  ∑  it is the state machine then CS and SC are matrix diagonal.  

c) If CS and SC are diagonal matrix then ∑ it is state machine Tt∈∃  that  Φ=•t  or Φ=•t . 
 
PROOF. 
a) Using proposition 1.2 a) and c) we have CT(t, t)= t•  and TC(t, t)= •t  for Tt∈∀ . From 

definition we have ∑ state machine ⇔ t• = •t =1 ⇔ TC(t, t)=CT(t, t)=1 for  Tt∈∀ .  
b) If  ∑ it is a state machine ⇒ Tt∈∀  has one entrance and one exit and so t can not be many 
entries in two different locations would be any different because Tt∈  that will be •t =2>1. It 

follows therefore that ssSss ≠∈∀ ,,  we have Φ=∩•• ss  which means that CS(s, 
s )=| ss •• ∩ |=0. 

Analog Tt∈∀  output can not be common to two different locations that otherwise would 
have 

that •t =2>1 and hence ssSss ≠∈∀ ,,  we have s s• •∩ = Φ . Thus we deduce from 1.2. item 

d) SC(s, s )= 0=∩ •• ss , ssSss ≠∈∀ ,, . 
c) If CS and SC are diagonal we have ⇒ ssSss ≠∈∀ ,,  avem  CS(s, s )=SC(s, s ) = 0 and hence 
the 1.2. gain Φ=∩•• ss and Φ=∩ •• ss . It follows that Tt∈∀ , t•  şi •t , and can contain no 
more than one location, ie 1≤•t  and 1≤•t . This means that time ∑  it is a state machine or 
that Tt∈∃  that t has no input and / or any output. 
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COROLLARY 2.8.  
Let  be ∑ a PT- net {0, 1}-value and hard-connex. Then ∑ it is the state machine ⇔  

SC and CS are diagonals matrix. 
PROOF. 

Because ∑ it is hard-connex, resutls that Tt∈∀ we have Φ≠•t   and Φ≠•t  and then 
point c) of the theorem says that SC and CS are diagonals⇒∑ it is machine state. The 
reciprocal  is even point b) of the theorem  

Follows an interesting result by fact that it specifies an upper edge  for the number of 

the accessible markings  in a machine  state   bimarked. 

DEFINITION 2.9  

Let be ∑= (S, T, Pre, Post) a state machine. We say that ∑ it is bimarked 

⇔ 0μ∀ initial marking of the network, 0μ  puts on network locations only two marks . 

PROPOSITION 2.10  

Let be ∑= (S, T, Pre, Post) a  bimarked state machine, with n  locations and 0μ  is it 

marking  initial.  

Then the lot of markings accessible is finished and in addition 
2

)1(),( 0
+

≤∑ nnA μ . 

PROOF. 

The two markings which   they puts on the network locations could  both be attributed 

to  a location one  or  one to two different locations. In the first case, the transitions from 

output of that location  have concession at 0μ  and producing one of them, one of  a marking is 

moved to a new location. In this situation by producing one or another of the transitions  

located at the exit of the two locations, are obtained new markings that does not change the 

number of locations marked and this because Tt∈∀ we have 1=•t  which means that the 

number of locations is not diminishing and   we have 1=•t  which says that the number of 

locations marked increase not. It follows therefore that any marking μ  of the network will 

mark the only two locations and that μ  may not have than the  elements  0, 1 and 2.   Since 

the number of possible combinations of these values on the n-locations of the network, so 

their sum  be 2  is finite, results that the number of markings accessible is finite .  

Obviously the maximum value is obtained when the machine state is hard-connex 

because otherwise if there is at least  a location with no one exit when a marking arrive into it 

will she not be able to move never from s, and  so certain marking can not be obtained (it is as 
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if a marking can be in a fixed location and the other would cover a part or all of the other 

locations ). 

In this case  will be n-markings that assigns each locations with two markings, and the 

others leave them unmarked .  

Assume that the locations are: S={s1, s2,……, sn}. 

If a mark is puts in s1 then other mark can occupy any of the other n-1 free locations , 

and so, in this case we obtain n-1 distinct markings by the firsts. Similarly, if a mark is placed 

in the s2  then the other can handle any of the other n-2 locations s3,….sn free (do not use and 

not to s1  with a marker already obtained in the previous step).  

By recursive procedure is apparent that if  one marking  the deals  locationsn sn-1 then 

the other can only  deal  on sn  obtain the marking (00…011)t. So the total number of 

markings  obtained in this case is : 

n+(n-1)+…..+1=
2

)1( +nn . 

PROPOSITION 2.11  

Let be ∑ a bimarked state machine and hard-connex. Then ∑ it is a PT-net viable and 

2-bordered. 

PROOF. 

We will show that for any marking initial 0μ  of the network, ),( 0∑ μ  is viable and 2-

bordered. Since ∑  it is hard-connex, results and graph of the marking accessible GA(∑) is 

hard-connex, reduce to the absurdity that if there is a marking from which no longer leaves 

any arc to another marking would mean that at least one of two locations indicated that the 

marking has no output arc to a transition of any network, meaning that Ss∈∃  that  Tt∈∀ , 

Pre(s, t)=0. But this means that s and t can not be linked by road and therefore would not be ∑ 

loud related. GA(∑) is hard-connex that ⇒ ),(, 0∑∈∀ μμμ A , ∗∈∃ Tσ  that μσμ >[ . 

Because in a state machine Tt∈∀  is allowed to μ  a bookmarking and how μ  to  re-obtain 

after a repetitive sequence σ  containing t resulting from 2.1. that it is viable and how it is 

certain, ),( 0∑ μ it is viable. 

That ∑ that is 2-bordered resulted from the proof previous, where was shown earlier 

that ),( 0∑∈∀ μμ A  şi Ss∈∀  we have 2)( ≤sμ . 
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THE EXAMPLE 2.12  
Let the  hard-connex state machine from figure 3.6.a) in wich t)0110(0 =μ .   

 It is noted that, },,,,,,,,,{),( 98765432100 μμμμμμμμμμμ =∑A , where 
t)0020(1μ , t)0011(2 =μ , t)1100(3 =μ , t)1010(4 =μ  , t)2000(5 =μ , t)1001(6 =μ  , 

t)0200(7 =μ t)0101(, 8 =μ , and t)0002(9 =μ . Graph marking accessible ∑’s is given in 
figure 3.6.b). Since ∑ it is hard-connex observed that GA(∑) is hard-connex.  

Applying the proposition 2.10 we get for n = 4.10 marked ∑ 's accessible, which is 
easily seen on the figure. Machine state is viable and 2-bordered as seen on the figure. 
                                                 1                             
 
 
                                                 a 
 
 
                                  2 
                       
                    b c 
 
 
 3 4 
 
 d e 
 

a) Bimarked state machine 
 

                                         0μ  
           a                      b 
                                            d            c              e 
                         1μ      b 
                                         3μ                    2μ  
                   d        d  b                   e              d 
 
           4μ             5μ      b             c   
           
                                                c                                    6μ                                                                      
           b            7μ                             8μ  a b 
                                               e 
                                                         c                                  
                                                                    e 
                                                     9μ   
 b) Graph marking accessible 
 Fig. 3.  State machine  
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In what follows we prove that any program P can be associated state machine. For this 

we use the results of structured programming [] including the structure theorem of Bohn and 

Jacopini. 

DEFINITION 2.13 [4]  

We call the basic structures of structured programming structures: SEQVENCE noted 

),( baπ  (sequential structure), WHILE-DO noted ),( aαΩ  (repetitive structure subject before) 

and IF-THEN-ELSE noted ),;( baαΔ  (alternative structure) where a and b are functional 

blocks (operations on certain basic variables), and α  the block is predicative which selects the 

next operation to be run. 

We will show in figure 4 the basic structures of the above. 

         
         
   F 
 
 T 
 
 
a) ),( baπ  
 

T 
                                                                                        F 
 
 
                                          b) ),( aαΩ                                  c) ),;( baαΔ  
 
                  Fig 4 The basic structures of structured programming 
 

 

DEFINITION 2.14. [2]  

Let SP = ( )QPF ,∪  schedule an associated program logic P where  F is many blocks 

fonction of the scheme, many blocks predicative P, Φ=∩ PF  and Q many arcs. We 

introduce three functional blocks F, T, K F∉  and a block predicative P∉ω  in the following 

manner. Block F transforms any object x in the pair (0, x), T transforms any object x in the 

pair (1, x) where 0 and 1 values are indeed true and false respectively associated K block any 

pair (v, x) with }1,0{∈v the of the second component to x. So F (x) = (0, x), T (x) = (1, x),  

K( v, x) = x.  

α  

α  

a 

a 

b 
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Predicative block ω  is defined by 11),( =⇔= vxvω  (ω  checked ⇔  first component 

of the pair (v, x) is 1). 

THEOREM 2.15. [2]  

Any logical schema SP = ( )QPF ,∪  related to a program P can be transformed into a 

logical schema structured SP '= ( )','' QPF ∪  using basic structures defined in 2.13. and where 

{ } { } AQQQPPKTFFF ∪==∪=∪= ',',,,' ω , A is a lot of arcs required legării blocks F, T, 

K, ω  with blocks of SP. 

PROOF. We found in [2]. 

THEOREM 2.16.  

Let P be a program and SP = (B, Q) a logical scheme associated with  P..  

Whether ∑ P = (S, T, Pre, Post) PT-Petri net associated with SP included in note 2.2.  

Then ∑ P is a state machine.        

  PROOF. Using theorem 2.15. will be sufficient to prove that the basic 

structures ΔΩ,,π  are associated Petri subreţele are sections of a state machine. Using the 

construction in remark 2.2. basic structures are associated with sections of Petri networks fig 

5 [a), for π , b) for Ω , c) for Δ ]. 

It is noted that a block with two predicative values of truth and is associated if the two 
transitions T is predicative  
 
 
 
 
 
 
 
 
     a) Π(a;b)                                b) Ω (α;a)                                  c) Δ (α;a,b) 
                             

Fig. 5. Sections Petri networks associated with the basic structures of structured 

programming  true and αF if false. Also note that all three sections of Petri networks are state 

machines because each transition has one input and one output.    
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OBSERVATION 2.16. 

It is not necessary for structured logic diagram SP’ by theorem 2.15. to use all 
auxiliary blocks placed in the definition 2.14. In fact if the initial schedule does not contain 
cycles (return to blocks already completed the transition from START to STOP) will not be 
any need for auxiliary block structure but will be used procedure codes halving [39] which 
consists of repeating certain blocks on every branch of Δ(α;a,b)  when this is necessary for the 
structuring and Π and Δ. If the schema contains original ciclări who can not speak and only Π 
and Δ can use technique of Boolean variable  described in [123] leading to the use of auxiliary 
blocks T, F, K and for structuring ω.  

            
THE EXAMPLE 2.17.

Let P be the following program: 
Let be determine max (x, y, z) for x, y, z read from the keyboard, and  print the result. 
A logical schema SP associated with   P is given in Fig. 6  
Since  isn't need for recovery SP it is  structured only by Π and Δ. 
The network Petri,   associated with SP,  as we can see in construction  from remark 

2.2  is given in Fig. 7 and notes on drawing that present a state machine. 
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Fig. 6. Logical structural scheme 
   
 
 
 

START 

CITESTE 
   x, y, z 

y>x 

y>z x>z 

SCRIE 
    Y SCRIE 

    Z 

SCRIE 
    Z 

SCRIE 
    X 

STOP 

      194



Marin Popa, Mariana Popa, Mihaita Dragan 

�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 It is noted that, for the structuring is necessary  of g block dedublarea  . in the state 
machine associated with this block is associated not two transition, only one transition. 
     a 

 
 
 
 
 
        b           
                                                  
                                          cD                                        cN     
 
 
 
 
 

  dD                                 dN                               eN                                eD 
 
 
 

       f                                                  g                                    h       
 
 

 
 
 
            i 

Fig.7. State machine associated to a program 
 
 
CONCLUSIONS 
 
 This article highlights the importance of Petri networks in modeling discrete systems. 
Even with this class of the Petri net called the  state machine   class, which is one of the 
simplest classes, it is noted of this article, that can be obtained  results interesting in complex 
research fields such as automata theory, sequential processes and accuracy study programs. 
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