
First International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, 22-25 October, 2009

Wasp based algorithms and applications

Dana Simian

Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present

1

On Particular Class of Location-Transition

 Petri Nets: State Machine
Marin Popa, Mariana Popa, Mihaita Dragan

 Abstract
This article discusses important properties of a particular class of Petri nets, class state machine. This

class allows finit automate and sequential processes modeling. A deficiency of this class is not allows
synchronization of independent processes. Obtain here some theoretical results in a bimarked state machine and
shows that any program can be associated in a Petri net’s of this class. Some properties of such programs for
their accuracy can be studied using results of the class state machine.

Keywords: state machine monomarked, state machine bimarked, viability, surety,

S-conflict matrix, S- confluence matrix, T-conflict matrix, T-confluence matrix.

This particular class of Petri Net’s the automats modeling and finite sequential

processes. Operation of a state machine simulating a multitude of independent processes

which unfortunately can not be synchronized in this particular class.

1. PRELIMINARY NOTIONS

In this section we present some concepts and theoretical results of the theory of Petri

networks wich are required to demonstrate results that determine the class type state machine

of Petri networks.

DEFINITION 1.1 [3] Be),,,(postpreTS=Σ a Petri net and ,Pr e ,Post two finite

matrix size respectively constructed as follows:

⎩
⎨
⎧

=
≠

=
0),(Pr,0
0),(Pr,1

),(Pr
tse
tse

tse ,
⎩
⎨
⎧

=
≠

=
0),(,0
0),(,1

),(
tsPost
tsPost

tsPost

a) We call the matrix T - symmetric conflict matrix eeCT
t

PrPr •= , of size TT × .

b) We call S-matrix symmetric conflict matrix PostPostCS
t
•=

t
CS Post Post= ⋅ , of size

SS × .

c) We call T-matrix confluence symmetric matrix
t

PostPostTC •= , of size TT × .

d) We call S-matrix confluence of symmetric matrix
t

eeSC PrPr •= , of size SS × .

e) We call the matrix T - precedence symmetric matrix ePostTP Pr•= , of size TT × .

f) We call the matrix S - precedence symetric matrix PosteTP •= Pr , of size SS × .

 182

Marin Popa, Mariana Popa, Mihaita Dragan

�

PROPOSITION 1.2 [3]

Be a Σ finite Petri net, CT, CS, TC, SC, TP, SP conflict matrix, precedence matrix,

respectively confluence matrix defined above and Sss ∈, , Ttt ∈, . Then :

a) ttttCT
•• ∩=),(, and tttCT •=),(

b) ssssCS
•• ∩=),(, and sstCS •=),(

c)
•• ∩= ttttTC),(, and •= tttTC),(

d)
•• ∩= ssssSC),(, and •= sssSC),(

e), ttttTP
•• ∩=),(, and),(ttTP = number of loops formed by t and a location to some.

f), ssssSP
•• ∩=),(, and),(ssSP = number of loops formed by s and a transition to some.

DEFINITION 1.3 [5]

 Be MΣ = (S, T, Pre, Post) a marked Petri net, and A(MΣ , 0μ) multitude of

accessible marks of the network. It's called the graph of marks the digraph accessible labeled:

GA(Σ) = (A(MΣ , 0μ) , T, Γ) where for label ∈∀μ A(MΣ , 0μ) , Γμ= { μ’∈ A(MΣ , 0μ) | ∃ t∈T so

that μ[t > μ’ }, and T is the multitude of labels for the digraph arcs.

The arch μ [> μ 't is labeled with the t ⇔ μ[t > μ’. It notes that GA(Σ) can be finite or

infinite as so as A(MΣ , 0μ) is finite or not. Because from μ0 we can reach to all the markings

of the A(MΣ , 0μ) ⇒ GA(Σ) is a related digraph.

DEFINITION 1.4 [5]

Let be ∑M=(∑, μ0) a Petri net marked and t∈T a transition of the network.

a) We say that transition t it is cvasiviable ⇔ ∃μ∈A(∑M) so that μ[t>.

b) Petri net ∑M it is cvasiviable ⇔ ∀ t∈T, transition t it is cvasiviable.

c) We say that transition t it is viable ⇔ ∀μ∈ A(∑M), transition t it is cvasiviable (∑ , μ)

d) Petri net ∑M it is viable ⇔ ∀ t∈T, transition t it is viable.

e) Petri net it is viable ⇔ ∃μ∈N|S| so that the network (∑ , μ) to be viable.

 183

On Particular Class of Location-Transition Petri Nets: State Machine

�

 Cvasiable of a transition that gives the opportunity to occur at least once and so that

the operation for which is represented in the system modeled is not important in functioning

of the system. The viability of a transition expresses that in any moment in the evolution of

the transition can occur to a specific mark which is a characteristic of systems with continuous

operation and for which a unavailability of a operation corresponds to a feather (error) of

the system.

DEFINITION 1.5 [5]

 Let be ∑M = (S,T,Pre,Post,μ0) a Petri net marked and s∈S a given location.

a) We say that s it is k-bordered (k∈N*) ⇔ ∀μ∈ A(∑M) we have μ(s)<=k.

For k = 1 we say that s it is binary.

We say that s is bordered ⇔ ∃ k∈N* that s it is k-bordered.

b) ∑M is bordered ⇔ ∀s∈S, ∃ k∈N* that s it is k-bordered.

c) A Petri net ∑ is bordered ⇔ ∀μ∈N|S| , the marked network ∑M = (∑,μ) it is bordered.

d) We say that ∑ it is sure if throughout its evolution any location of the network it is binary.

PROPOSITION 1.6 [5]

For any σ∈T* ∃ μ∈N|S| marking a network so that μ[σ〉.

PROPOSITION 1.7 [5]

Let be ∑M=(∑, μ0) a Petri net marked and t∈T a transition of his life. The transiton t is

viable ⇔ ∀μ∈ A(∑M) ∃μ′∈ A(∑, μ) and ∃ σ∈T* repetitive sequence containing t and such

that μ′[σ>.

2. THEORETICAL CONSIDERATIONS

DEFINITION 2.1 [1] Let Σ = (S, T, Pre, Post) a PT - Petri net {0,1} - value.

a) a) We say that Σ is the state machine Tt∈∀⇔ we have 1== •• tt (equivalent to

Tt∈∀ , ∑
∈

=
Ss

tse 1),(Pr and ∑
∈

=
Ss

tsPost 1),().

b) We say that the machine state Σ is monomarked ⇔ for 0μ∀ initial marking Ss∈∃! so that

1)(0 =sμ .

 184

Marin Popa, Mariana Popa, Mihaita Dragan

�

If an initial marking 0μ is allowed a single mark on a particular network location, then

the input transitions that have concession at this location 0μ and may produce one of them.

Thus, the mark will move from location to location designating the current state of the

machine. If permitted in 0μ several grades, then by producing the transition grid, these brands

moving independently simulating a variety of independent processes on the same program.

State machines but do not allow the synchronization of these processes.

OBSERVATION 2.2.

Any scheme logic associated with a program is transformed into a PT-network

(0,1)-valuated. Indeed, let P a program (a set of instructions that can be executed in a certain

order) and let be SP = (B, Q) a logical schem associated with a logical layout program, when

B it is a multitude of blocks for scheme logical , and Q it is a multitude of its arcs.

We associate to location P a PT-net ∑ P = (S, T, Pre, Post) as follows:

Each location corresponds to an arch from Q or a lot of arcs with same node terminal

, each transition corresponds to a block b from B if it is not test block (block predicative) or

transitions k from T correspond to a test block b from B, where k it is aritate for b- and Pre,

Post:S×T→N are given by:

⎩
⎨
⎧ =∈∃

=
otherwise

ttsTt
tse

,0
),(,,1

),(Pr
''

(t it is final node of s)

⎩
⎨
⎧

=
otherwise

tsPost
,0
,1

),(
t it is intial node of

arc s

Obtain such a PT net in wich transitions correspond to the scheme blocks , and the

locations correspond arcs of a logical scheme. If ∑P
 is a state machine monomarked, then

by producing the transitions, mark is moving from location to location and indicating a

instruction wich to be executed next .

PROPOSITION 2.3 [1]

Let be ∑ a state machine monomarked and hard-related, 0μ an initial marking, the

G∑=(S∪T,Γ) associated the digraph and his ∑ and GA GA(∑)=(A(∑, μ), T, Γ) graph

marking accessible ∑ 's definition given in 2.2. Then GA(∑) and T-labeled graph :

G=(S, T, 2Γ) are isomorphic.

 185

On Particular Class of Location-Transition Petri Nets: State Machine

�

PROOF

Because ∑ it is monomark by producing the transitions, the unique mark of the

network transitions moving from location to location. How 1t • = for Tt∈∀ result that

∑ ∑∈∀),(),,(0 μμμ A it is monomark and for 1t • = , Tt∈∀ and ∑ it is hard-related result

that Tt∈∀ can producing at a specific marker (to which the only marked location, is it his

entry) and that the number of different ∑ marking is equal to the number of locations in S.

Thus SA =∑),(0μ and so there is a correlation between S and A ∑),(0μ which

associating biunivoc a marker sμ of a location s and is it given by
⎩
⎨
⎧

≠
=

=
ss
ss

ss ',0
',1

)'(μ .

Since }[,|),({ 0 μμμμμ >∈∃∈=Γ ∑ tTtA we have that),(, 0∑∈∀ μμμ A we have

TtSss ∈∃∈∃⇔Γ∈ ,,μμ that sμμ =
s

μ μ= şi sst ss ,[∃⇔> μμ şi Tt∈∃ that ts =Γ)(

and st =Γ Sss ∈∃⇔ , şi Tt∈∃ that Sssssts ∈∃⇔Γ=ΓΓ=Γ= ,)(2 that ss 2Γ∈ . It
follows that),(μμ∀ arch in GA(∑),),(ss∃ arch in G corresponding from bijective above
him),(μμ .
Conversely, it is obvious because),(ss the arch in G, take the (,)s sμ μ arch in GA(∑).

COROLLARY 2.4

Let be ∑ a state machine monomarked with n = | S | location and marking μ some of it.

Then the number of the accessible markings is finished, and in addition nA ≤∑),(0μ .

PROOF.

Obviously by moving a marking unique from location to location we obtained new

markings of the network, in which one location is marked. So each marker has a single

element 1 and 0 the rest, and this element can occupy at most n-positions, can be obtained

at most n-different markings. The maximum number is reached when the state machine it is

hard-connex, because of the isomorphism established in the previous theorem.

PROPOSITION 2.5.

Let be ∑ a machine state monomarked and hard-connex. Then ∑ is it a PT-net viable

and sure.

 186

Marin Popa, Mariana Popa, Mihaita Dragan

�

PROOF.

 Let be 0μ∀ a initial marker of a ∑. We will show that),(0∑ μ it is viable and sure.

Since ∑ it is hard-connex ⇒ the graph G=(S, T, 2Γ) it is hard-connex and according to

previous 2.5, the graph of the marks accessible GA(∑) it is hard-connex, which means
∗∈∃∈∀ ∑ TA σμμμ),,(, 0 that μσμ >[.

It follows that after a certain sequence of procedures is it possible re-obtaining any

marking),(0∑∈ μμ A . How in a state machine Tt∈∀ is permitted at a marker μ (ie one

that assigns 1 only its entry) and how μ to obtain the sequence σ what containing t, so a

repetitive sequence, resulting in 1.7 sentence that it is viable. ∑ therefore follows that is it

viable.

Fact that ∑ it is sure resulting from definition of a ∑ namely from ∑
∈

=
Ss

tsPost 1),(we

obtain that Ss∈∃! so that Post(s, t)=1. In other words, by producing t marking unique of the

network is transformed from entry of t of exit its s ie and),(0∑∈∀ μμ A şi Ss∈∀ we have

.1)(≤sμ

THE EXAMPLE 2.6.

∑ Petri net of figure 1 is a state machine with initial marking t)100(0 =μ .

It is noted that: ta)010([10 => μμ 1
tb)001([21 => μμ

0212 [,[μμμμ >> dc a

 2

 b

 3

 c Fig.1. State machine d

So : () ()2100 ,,, μμμμ =ΣA

 187

On Particular Class of Location-Transition Petri Nets: State Machine

�

The graph's accessible markings it is in the figure 2 a) and graph G=(A, T, 2Γ) it is in

figure 2 b).

 a b a b

0μ 1μ 2μ 1 2 3

a) the graph's accessible markings b) graph G=(A, T, 2Γ)

 Fig. 2. The isomorphic graphs

Obviously the two graphs are isomorphic and ∑ is viable and sure.

Follows a characterization theorem of the machine state by a matrix T-conflict and T-

confluence defined in 1.1.

THEOREM 2.7 Let be ∑= (S, T, Pre, Post) a PT-Petri network (0, 1)-value and CS,

SC, CT, TC matricx S-conflict, S-confuence, T-conflict, T-confluence defined in 1.1. Then:

a) ∑ is it a machine state ⇔ CT(t, t)=1,TC(t, t)=1 for Tt∈∀ for (have all elements of the

diagonally 1)

b) If ∑ it is the state machine then CS and SC are matrix diagonal.

c) If CS and SC are diagonal matrix then ∑ it is state machine Tt∈∃ that Φ=•t or Φ=•t .

PROOF.
a) Using proposition 1.2 a) and c) we have CT(t, t)= t• and TC(t, t)= •t for Tt∈∀ . From

definition we have ∑ state machine ⇔ t• = •t =1 ⇔ TC(t, t)=CT(t, t)=1 for Tt∈∀ .
b) If ∑ it is a state machine ⇒ Tt∈∀ has one entrance and one exit and so t can not be many
entries in two different locations would be any different because Tt∈ that will be •t =2>1. It

follows therefore that ssSss ≠∈∀ ,, we have Φ=∩•• ss which means that CS(s,
s)=| ss •• ∩ |=0.

Analog Tt∈∀ output can not be common to two different locations that otherwise would
have

that •t =2>1 and hence ssSss ≠∈∀ ,, we have s s• •∩ = Φ . Thus we deduce from 1.2. item

d) SC(s, s)= 0=∩ •• ss , ssSss ≠∈∀ ,, .
c) If CS and SC are diagonal we have ⇒ ssSss ≠∈∀ ,, avem CS(s, s)=SC(s, s) = 0 and hence
the 1.2. gain Φ=∩•• ss and Φ=∩ •• ss . It follows that Tt∈∀ , t• şi •t , and can contain no
more than one location, ie 1≤•t and 1≤•t . This means that time ∑ it is a state machine or
that Tt∈∃ that t has no input and / or any output.

 188

Marin Popa, Mariana Popa, Mihaita Dragan

�

COROLLARY 2.8.
Let be ∑ a PT- net {0, 1}-value and hard-connex. Then ∑ it is the state machine ⇔

SC and CS are diagonals matrix.
PROOF.

Because ∑ it is hard-connex, resutls that Tt∈∀ we have Φ≠•t and Φ≠•t and then
point c) of the theorem says that SC and CS are diagonals⇒∑ it is machine state. The
reciprocal is even point b) of the theorem

Follows an interesting result by fact that it specifies an upper edge for the number of

the accessible markings in a machine state bimarked.

DEFINITION 2.9

Let be ∑= (S, T, Pre, Post) a state machine. We say that ∑ it is bimarked

⇔ 0μ∀ initial marking of the network, 0μ puts on network locations only two marks .

PROPOSITION 2.10

Let be ∑= (S, T, Pre, Post) a bimarked state machine, with n locations and 0μ is it

marking initial.

Then the lot of markings accessible is finished and in addition
2

)1(),(0
+

≤∑ nnA μ .

PROOF.

The two markings which they puts on the network locations could both be attributed

to a location one or one to two different locations. In the first case, the transitions from

output of that location have concession at 0μ and producing one of them, one of a marking is

moved to a new location. In this situation by producing one or another of the transitions

located at the exit of the two locations, are obtained new markings that does not change the

number of locations marked and this because Tt∈∀ we have 1=•t which means that the

number of locations is not diminishing and we have 1=•t which says that the number of

locations marked increase not. It follows therefore that any marking μ of the network will

mark the only two locations and that μ may not have than the elements 0, 1 and 2. Since

the number of possible combinations of these values on the n-locations of the network, so

their sum be 2 is finite, results that the number of markings accessible is finite .

Obviously the maximum value is obtained when the machine state is hard-connex

because otherwise if there is at least a location with no one exit when a marking arrive into it

will she not be able to move never from s, and so certain marking can not be obtained (it is as

 189

On Particular Class of Location-Transition Petri Nets: State Machine

�

if a marking can be in a fixed location and the other would cover a part or all of the other

locations).

In this case will be n-markings that assigns each locations with two markings, and the

others leave them unmarked .

Assume that the locations are: S={s1, s2,……, sn}.

If a mark is puts in s1 then other mark can occupy any of the other n-1 free locations ,

and so, in this case we obtain n-1 distinct markings by the firsts. Similarly, if a mark is placed

in the s2 then the other can handle any of the other n-2 locations s3,….sn free (do not use and

not to s1 with a marker already obtained in the previous step).

By recursive procedure is apparent that if one marking the deals locationsn sn-1 then

the other can only deal on sn obtain the marking (00…011)t. So the total number of

markings obtained in this case is :

n+(n-1)+…..+1=
2

)1(+nn .

PROPOSITION 2.11

Let be ∑ a bimarked state machine and hard-connex. Then ∑ it is a PT-net viable and

2-bordered.

PROOF.

We will show that for any marking initial 0μ of the network,),(0∑ μ is viable and 2-

bordered. Since ∑ it is hard-connex, results and graph of the marking accessible GA(∑) is

hard-connex, reduce to the absurdity that if there is a marking from which no longer leaves

any arc to another marking would mean that at least one of two locations indicated that the

marking has no output arc to a transition of any network, meaning that Ss∈∃ that Tt∈∀ ,

Pre(s, t)=0. But this means that s and t can not be linked by road and therefore would not be ∑

loud related. GA(∑) is hard-connex that ⇒),(, 0∑∈∀ μμμ A , ∗∈∃ Tσ that μσμ >[.

Because in a state machine Tt∈∀ is allowed to μ a bookmarking and how μ to re-obtain

after a repetitive sequence σ containing t resulting from 2.1. that it is viable and how it is

certain,),(0∑ μ it is viable.

That ∑ that is 2-bordered resulted from the proof previous, where was shown earlier

that),(0∑∈∀ μμ A şi Ss∈∀ we have 2)(≤sμ .

 190

Marin Popa, Mariana Popa, Mihaita Dragan

�

THE EXAMPLE 2.12
Let the hard-connex state machine from figure 3.6.a) in wich t)0110(0 =μ .

 It is noted that, },,,,,,,,,{),(98765432100 μμμμμμμμμμμ =∑A , where
t)0020(1μ , t)0011(2 =μ , t)1100(3 =μ , t)1010(4 =μ , t)2000(5 =μ , t)1001(6 =μ ,

t)0200(7 =μ t)0101(, 8 =μ , and t)0002(9 =μ . Graph marking accessible ∑’s is given in
figure 3.6.b). Since ∑ it is hard-connex observed that GA(∑) is hard-connex.

Applying the proposition 2.10 we get for n = 4.10 marked ∑ 's accessible, which is
easily seen on the figure. Machine state is viable and 2-bordered as seen on the figure.
 1

 a

 2

 b c

 3 4

 d e

a) Bimarked state machine

 0μ
 a b
 d c e
 1μ b
 3μ 2μ
 d d b e d

 4μ 5μ b c

 c 6μ
 b 7μ 8μ a b
 e
 c
 e
 9μ
 b) Graph marking accessible
 Fig. 3. State machine

 191

On Particular Class of Location-Transition Petri Nets: State Machine

�

In what follows we prove that any program P can be associated state machine. For this

we use the results of structured programming [] including the structure theorem of Bohn and

Jacopini.

DEFINITION 2.13 [4]

We call the basic structures of structured programming structures: SEQVENCE noted

),(baπ (sequential structure), WHILE-DO noted),(aαΩ (repetitive structure subject before)

and IF-THEN-ELSE noted),;(baαΔ (alternative structure) where a and b are functional

blocks (operations on certain basic variables), and α the block is predicative which selects the

next operation to be run.

We will show in figure 4 the basic structures of the above.

 F

 T

a)),(baπ

T
 F

 b)),(aαΩ c)),;(baαΔ

 Fig 4 The basic structures of structured programming

DEFINITION 2.14. [2]

Let SP = ()QPF ,∪ schedule an associated program logic P where F is many blocks

fonction of the scheme, many blocks predicative P, Φ=∩ PF and Q many arcs. We

introduce three functional blocks F, T, K F∉ and a block predicative P∉ω in the following

manner. Block F transforms any object x in the pair (0, x), T transforms any object x in the

pair (1, x) where 0 and 1 values are indeed true and false respectively associated K block any

pair (v, x) with }1,0{∈v the of the second component to x. So F (x) = (0, x), T (x) = (1, x),

K(v, x) = x.

α

α

a

a

b

 192

Marin Popa, Mariana Popa, Mihaita Dragan

�

Predicative block ω is defined by 11),(=⇔= vxvω (ω checked ⇔ first component

of the pair (v, x) is 1).

THEOREM 2.15. [2]

Any logical schema SP = ()QPF ,∪ related to a program P can be transformed into a

logical schema structured SP '= ()','' QPF ∪ using basic structures defined in 2.13. and where

{ } { } AQQQPPKTFFF ∪==∪=∪= ',',,,' ω , A is a lot of arcs required legării blocks F, T,

K, ω with blocks of SP.

PROOF. We found in [2].

THEOREM 2.16.

Let P be a program and SP = (B, Q) a logical scheme associated with P..

Whether ∑ P = (S, T, Pre, Post) PT-Petri net associated with SP included in note 2.2.

Then ∑ P is a state machine.

 PROOF. Using theorem 2.15. will be sufficient to prove that the basic

structures ΔΩ,,π are associated Petri subreţele are sections of a state machine. Using the

construction in remark 2.2. basic structures are associated with sections of Petri networks fig

5 [a), for π , b) for Ω , c) for Δ].

It is noted that a block with two predicative values of truth and is associated if the two
transitions T is predicative

 a) Π(a;b) b) Ω (α;a) c) Δ (α;a,b)

Fig. 5. Sections Petri networks associated with the basic structures of structured

programming true and αF if false. Also note that all three sections of Petri networks are state

machines because each transition has one input and one output.

a b

αT

αF

α a

α
F

b

 193

On Particular Class of Location-Transition Petri Nets: State Machine

�

OBSERVATION 2.16.

It is not necessary for structured logic diagram SP’ by theorem 2.15. to use all
auxiliary blocks placed in the definition 2.14. In fact if the initial schedule does not contain
cycles (return to blocks already completed the transition from START to STOP) will not be
any need for auxiliary block structure but will be used procedure codes halving [39] which
consists of repeating certain blocks on every branch of Δ(α;a,b) when this is necessary for the
structuring and Π and Δ. If the schema contains original ciclări who can not speak and only Π
and Δ can use technique of Boolean variable described in [123] leading to the use of auxiliary
blocks T, F, K and for structuring ω.

THE EXAMPLE 2.17.

Let P be the following program:
Let be determine max (x, y, z) for x, y, z read from the keyboard, and print the result.
A logical schema SP associated with P is given in Fig. 6
Since isn't need for recovery SP it is structured only by Π and Δ.
The network Petri, associated with SP, as we can see in construction from remark

2.2 is given in Fig. 7 and notes on drawing that present a state machine.

 a

 b

 c
 D N

 d e
 D N N e D

 f g g h

 i

Fig. 6. Logical structural scheme

START

CITESTE
 x, y, z

y>x

y>z x>z

SCRIE
 Y SCRIE

 Z

SCRIE
 Z

SCRIE
 X

STOP

 194

Marin Popa, Mariana Popa, Mihaita Dragan

�

 It is noted that, for the structuring is necessary of g block dedublarea . in the state
machine associated with this block is associated not two transition, only one transition.
 a

 b

 cD cN

 dD dN eN eD

 f g h

 i

Fig.7. State machine associated to a program

CONCLUSIONS

 This article highlights the importance of Petri networks in modeling discrete systems.
Even with this class of the Petri net called the state machine class, which is one of the
simplest classes, it is noted of this article, that can be obtained results interesting in complex
research fields such as automata theory, sequential processes and accuracy study programs.

 195

On Particular Class of Location-Transition Petri Nets: State Machine

�

 REFERENCES

[1]. E. Best, A. Merceron-Brecht - "Some properties of nonsequential processes", IFS Report 82. 07
(august 1982), Gesellschaft fur mathematik und Datenverarbeitung MBH, Bonn.
[2]. M. Popa I. Vaduva - "Culegere de probleme de sisteme informatice", Tipografia Universitatii
Bucuresti, 1988.
[3]. J. L. Johnson, T. Murata - "Structure matrix for Petri nets and their applications", Journal of Franklin
Institute, Vol 319 Nr. 3 march, 1985.
[4]. L. Dumitrascu , A. Ioachim - "Tehnici de construire a programelor cu structuri alternative", Editura
Academiei, 1981..
[5]. G. Brams - "Reseaux de Petri: Theory et Practique", Mason, Paris, 1983

THE AUTHORS

MARIN POPA MARIANA POPA MIHAITA DRAGAN

UNIVERSITATEA BUCURESTI UNIVERSITATEA BUCURESTI UNIVERSITATEA BUCURESTI
DEP. TEHNOLOGII DEP. TEHNOLOGII DEP. TEHNOLOGII
FAC. : TEHN. INFORMATIEI FAC. : TEHN. INFORMATIEI FAC. : TEHN. INFORMATIEI
BLVD. M.KOGALNICEANU BLVD. M. KOGALNICEANU BLVD. M. KOGALNICEANU
NR. 36-46, SECTOR 5 NR. 36-46, SECTOR 5 NR. 36-46, SECTOR 5
COD POSTAL 70709 COD POSTAL 70709 COD POSTAL 70709
BUCURESTI, ROMANIA BUCURESTI, ROMANIA BUCURESTI, ROMANIA
marpopa2002@yahoo.com marpopa2002@yahoo.com dragan_mihaita@yahoo.com

 196

