
First International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, 22-25 October, 2009

Wasp based algorithms and applications

Dana Simian

Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present

1

Parallel-Distributed Programming Tool for the Linda
Programming Model

Ernest Scheiber

Abstract

This note presents an implementation of the Piranha model to program parallel - distributed
application and a development tool. We use the TSpaces framework from I.B.M. as a middleware
for data exchanges. Our implementation does not introduce a new API but requires certain program
structure.

1 Introduction

Even if there is a lack of agreements on what exactly grid computing or cloud computing are, the
parallel - distributed programming API’s or tools are one of the main ingredient to build such computing
environment or application.

Linda is not a programming model but a set of operations that can be added to any language. Linda
gives a way to communicate and synchronize different processes. We known the following Linda type
development frameworks in Java: TSpaces from I.B.M., [6] and JavaSpaces from SunMicrosystems.

The Piranha model is a parallel - distributed computing model based on Linda, [2]. The paradigm
behind Piranha is that of dispatcher-worker. The dispatcher coordinates the activities while the workers
solve the received tasks. Between them, the communications are programmed using the Linda operations.

Other known parallel - distributed computing models are MPI, [5, 1], map-reduce.
This note presents an implementation of the Piranha model to program parallel - distributed appli-

cation and a development tool. We use the TSpaces framework, but instead other messaging service may
be used. The actual messaging services (Sun MessageQueue, apache-activemq or qpid) own the required
functionality of a Linda framework. The reason of our development activities consists in the lack of free
correspondent software. A preliminary version was reported in [3].

An application to be used with the tool is constrained to a specific structure; it is composed from a
dispatcher thread and worker threads. Between the dispatcher thread and the worker threads there are
asynchronous message changes. These messages are kept by a TSpaces server until they are consumed.
The tool allows us to state the network of workstations involved in the computation, to deploy and to
launch an application.

2 The Structure of an Application

We suppose that several computers in a network will perform the required computation. The Java
application contains:

• A Console class - The Console launches to run the Dispatcher.

 203

Parallel-Distributed Programming Tool for the Linda Programming Model

�

• On any workstation there is a Service class, it instantiates and starts the Workers.

• The application associated TSpace server, it keeps the messages until they are consumed.

The structure of an application is outlined in Fig. 1.

Console Servicei

Dispatcher Worker1 . . . Workerqi

Network

TSpaces Server

�

�
�

��

�
�

��

� � �� � �

��

Figure 1: The structure of an application.

The Dispatcher and the Worker classes are threads. The constructors of the dispatcher and of the
worker classes are responsible to establish the connection with the TSpaces server. The run methods
of these Java threads contain the specific activities to solve the given problem. On a workstation it is
possible to start several worker threads. The i index in Fig. 1 denotes a workstation on which qi worker
threads are run. The Console and Service classes are independent from an application.

Between the dispatcher thread and the worker threads there are asynchronous message exchanges.
These messages are kept by a TSpaces server. The data to be exchanged between the dispatcher and
the workers are wrapped into objects. To distinguish between different kinds of data, a tag field may be
introduced. A message consumer (dispatcher or worker) waits until all the required messages are available.
In this way the synchronization problems are solved as well as the coordination of the activities.

3 The anatomy of our implementation

We shall analyze the codes of the above mentioned classes for a very simple application: the dispatcher
sends a greeting message to each worker. After receiving the message, a worker responds indicating the
name of its computer.

Let us suppose that we use n workstations and that on the i−th station there will be launched qi

workers (
∑n

i=1 qi = q).
Some environment data are fixed in two property files:

propConsole propService
Name Name

AppName AppName
Host Host
Port Port
TasksNumber q TasksNumber q

ComputerTaskNumber qi

ComputerFirstTaskIndex
∑ i−1

j=1 qj , q0 = 0

where AppName, Host, Port identifies the name of the application TupleSpace and respectively the host
of the TSpaces server with the corresponding port number.

As we have mention, the dispatcher is launched by the Console class, while the workers are launched
by the Service class. These two classes are independent of an application.

 204

Ernest Scheiber

�

The Console class The Service class

package ******; package ******;
import java.util.Properties; import java.util.Properties;
import java.io.*; import java.io.*;

public class Console{ public class Service{
Properties p=null; Properties p=null;

public Console(String path2Prop) { public Service(String path2Prop)
try{ try{

// Loads the properties
FileInputStream fis=new FileInputStream fis=new

FileInputStream(path2Prop+"propConsole"); FileInputStream(path2Prop+"propConsole");
p=new Properties(); p=new Properties();
p.load(fis); p.load(fis);

} }
catch(Exception e){ catch(Exception e){

System.out.println(e.getMessage()); System.out.println(e.getMessage());
System.exit(1); System.exit(1);

} }
} }

public static void main(String[] args){ public static void main(String[] args){
String fs=System.getProperties(). String fs=System.getProperties().

getProperty("file.separator"); getProperty("file.separator");
String path2Prop; String path2Prop;

// An argument may contain the path to the property file
if(args.length>0) if(args.length>0)

path2Prop=args[0]+fs; path2Prop=args[0]+fs;
else else

path2Prop=""; path2Prop="";
Console obj=new Console(path2Prop); Service obj=new Service(path2Prop)

// Set the properties
String appName=obj.p.getProperty("AppName"); String appName=obj.p.getProperty("AppName");
String host=obj.p.getProperty("Host"); String host=obj.p.getProperty("Host");
String sPort=obj.p.getProperty("Port"); String sPort=obj.p.getProperty("Port");
String sTasks=obj.p.getProperty("TasksNumber"); String sTasks=obj.p.getProperty("TasksNumber");

String sIndex=obj.p.getProperty(
"ComputerFirstTaskIndex");

String sComputerTasks=obj.p.getProperty(
"ComputerTaskNumber");

int port=Integer.parseInt(sPort); int port=Integer.parseInt(sPort);
int tasks=Integer.parseInt(sTasks); int tasks=Integer.parseInt(sTasks);

int index=Integer.parseInt(sIndex);
int computerTasks=Integer.parseInt(sComputerTasks);

// The dispatcher is launched into execution // The required number of workers are
// launched into execution

Dispatcher dispacher=new Dispatcher(appName, Worker[] worker=new Worker[computerTasks];
host,port,tasks); for(int i=0;i<computerTasks;i++){

dispacher.start(); worker[i]=new Worker(appName,host,
port,tasks,index+i);
worker[i].start();

}
} }

} }

The wrapper class that contain the data to be exchanged between the dispatcher and workers may
be

1 package t s h e l l o ;
2 import java . i o . S e r i a l i z a b l e ;

4 public c lass DataWrapper implements S e r i a l i z a b l e {
5 // tag=0 message sent by the d i spatcher
6 // tag=1 message sent by a worker
7 public int tag ;
8 public St r ing mesaj ;

10 public DataWrapper (St r ing mesaj , int tag) {
11 this . mesaj=mesaj ;
12 this . tag=tag ;
13 }
14 }

The connection to the TupleSpace server is made in the constructors of the Worker and Dispatcher
classes.

 205

Parallel-Distributed Programming Tool for the Linda Programming Model

�

The code of the Worker class is

1 package t s h e l l o ;
2 import com . ibm . t space s . ∗ ;
3 import java . net . ∗ ;
4 import java . i o . ∗ ;

6 public c lass Worker extends Thread{
7 private int id ;
8 private TupleSpace t s=null ;
9 private St r ing tsName ;

10 private int ta sk s ;
11 private PrintStream f ;

13 public Worker (S t r ing tsName , St r ing host , int port , int tasks , int id){
14 this . tsName=tsName ;
15 this . id=id ;
16 this . t a sk s=tasks ;
17 t s=startTupleSpace (tsName , host , port) ;
18 try{
19 f=new PrintStream (”worker”+id+” . txt ”) ;
20 }
21 catch (Exception e){
22 System . out . p r i n t l n (” F i l e e r r o r : ”+e . getMessage ()) ;
23 }
24 }

26 public void run (){
27 Tuple tup l e=null ;
28 DataWrapper d=null ;
29 St r ing source=tsName+id ;
30 St r ing dest=tsName+” ”+id ;
31 try{
32 Tuple template=new Tuple (source ,new FieldPS (DataWrapper . class)) ;
33 tup l e=(Tuple) t s . waitToTake (template) ;
34 d=(DataWrapper) tup l e . g e tF i e l d (1) . getValue () ;
35 i f (d . tag==0){
36 St r ing msg=”Mesage r e c e i v ed by ”+id+” from the d i spa t che r :\n”+d . mesaj ;
37 System . out . p r i n t l n (msg) ;
38 f . p r i n t l n (msg) ;
39 InetAddress addr=InetAddress . getLocalHost () ;
40 St r ing s=addr . getHostName () ;
41 St r ing mesOut=” Hel lo from ”+id+” at ”+s ;
42 d=new DataWrapper (mesOut , 1) ;
43 FieldPS ps=new FieldPS (d) ;
44 t s . wr i t e (dest , ps) ;
45 f . c l o s e () ;
46 }
47 }
48 catch (Exception e){
49 System . out . p r i n t l n (”Exception−Worker : ”+e . getMessage ()) ;
50 }
51 }

53 private TupleSpace startTupleSpace (St r ing tsName , St r ing host , int port){
54 TupleSpace t s=null ;
55 try{
56 Tuple a c t i v e=TupleSpace . s t a tu s (host , port) ;
57 i f ((a c t i v e==null) | | (a c t i v e . g e tF i e l d (0) . getValue () . equa l s (”NotRunninng”))) {
58 System . out . p r i n t l n (”TupleSpace Server i s not a v a i l a b l e ”) ;
59 System . e x i t (1) ;
60 }
61 t s=new TupleSpace (tsName , host , port) ;
62 }
63 catch (TupleSpaceException e){
64 System . out . p r i n t l n (”TupleSpaceException ”+e . getMessage ()) ;
65 System . e x i t (1) ;
66 }
67 return t s ;
68 }
69 }

Finally, in the Dispatcher class, there are send messages to the workers (the scatter method) and are
waiting to receive the corresponding responses (the gather method):

 206

Ernest Scheiber

�

1 package t s h e l l o ;
2 import com . ibm . t space s . ∗ ;
3 import java . i o . ∗ ;

5 public c lass Dispatcher extends Thread{
6 private int ta sk s ;
7 private TupleSpace t s=null ;
8 private St r ing tsName ;
9 private PrintStream f ;

11 public Dispatcher (S t r ing tsName , St r ing host , int port , int ta sk s) {
12 this . t a sk s=tasks ;
13 this . tsName=tsName ;
14 t s=startTupleSpace (tsName , host , port) ;
15 try{
16 f=new PrintStream (” d i spa t che r . txt ”) ;
17 }
18 catch (Exception e){
19 System . out . p r i n t l n (” F i l e e r r o r : ”+e . getMessage ()) ;
20 }
21 }

23 public void run (){
24 try{
25 s c a t t e r () ;
26 gather () ;
27 t s . c leanup () ;
28 }
29 catch (Exception e){
30 System . out . p r i n t l n (e . getMessage ()) ;
31 }
32 }

34 private void s c a t t e r (){
35 St r ing mesOut=” Hel lo from the d i spa t che r ! ” ;
36 DataWrapper d=new DataWrapper (mesOut , 0) ;
37 try{
38 FieldPS ps=new FieldPS (d) ;
39 Tuple mult i=new Tuple () ;
40 for (int i =0; i<ta sk s ; i++){
41 St r ing dest=tsName+i ;
42 Tuple nextTuple=new Tuple (dest , ps) ;
43 mult i . add (new Fie ld (nextTuple)) ;
44 }
45 TupleID [] i d s=t s . multiWrite (mult i) ;
46 }
47 catch (TupleSpaceException e){
48 System . out . p r i n t l n (”TupleSpaceException−s c a t t e r 0 ”+e . getMessage ()) ;
49 }
50 System . out . p r i n t l n (” Sca t t e r OK”) ;
51 }

53 private void gather (){
54 Tuple tuple , template ;
55 DataWrapper d=null ;
56 try{
57 for (int i =0; i<ta sk s ; i++){
58 St r ing source=tsName+” ”+i ;
59 template=new Tuple (source ,new FieldPS (DataWrapper . class)) ;
60 tup l e=(Tuple) t s . waitToTake (template) ;
61 d=(DataWrapper) tup l e . g e tF i e l d (1) . getValue () ;
62 i f (d . tag==1){
63 System . out . p r i n t l n (d . mesaj) ;
64 f . p r i n t l n (d . mesaj) ;
65 }
66 }
67 f . c l o s e () ;
68 }
69 catch (Exception e){
70 System . out . p r i n t l n (”Exception−gather ”+e . getMessage ()) ;
71 }
72 }

74 private TupleSpace startTupleSpace (St r ing tsName , St r ing host , int port) { . . .}
75 }

 207

Parallel-Distributed Programming Tool for the Linda Programming Model

�

4 An example

The sixteen grid problem (www.ams.org/ams/16-grid.html). Each of the numbers 1,2,. . . ,16 is used
exactly once in the empty cells to form arithmetic expressions connected by symbols for the four basic
operations. Each row (column) is an arithmetic expression, read and performed left to right (top to
bottom), disregarding the usual order of operations, to yield the result at the right (bottom).

- × × =-60
× + × ÷

+ + - =29
+ + - ×

- - - =-14
+ - + -

× - - =32
=28 =1 =57 =27

A solution, presented in [4] is based on a parallelization scheme of the backtracking algorithm. Based
on the domain decomposition method, there is a more efficient way to solve this problem. In the set on
n order permutations, Pn, considering the lexicographic order the first permutation is (1, 2, . . . , n) and
the last is (n, n− 1, . . . , 1). Relative to this order, it may compute the m-th permutation, 1 ≤ m ≤ n!.

The first q1 = (n − 1)! elements of Pn have 1 on the first position, the next q1 elements have 2 on
the first position and so on. In the group having i on the first position, there are n − 1 subgroups with
q2 = (n− 2)! elements with the second element equals respectively with 1, 2, . . . , i− 1, i + 1, . . . , n. If the
first s − 1 elements are fixed, i1, . . . , is−1 then there exits n− s + 1 groups with qs = (n− s)! elements,
having on the i-th position an element of {1, . . . , n} \ {i1, . . . , is−1}.

To find the s-th element of the m-th permutation, we compute the group number ts having the is
element as constant, ts = �m

qs
�, and finally is will be the ls-th element of the sequence 1, . . . , n, after we

have deleted i1, . . . , is−1, where ls ≡ ts(mod n− s + 1), ls ∈ {1, 2, . . . , n− s + 1}.
If there are p workers, then the set of all n! permutations are equally divided into p intervals. Each

worker generates sequentially the permutations of its attached interval and verifies the restrictions of the
problem.

The unique solution of the sixteen grid problem is

1 - 2 × 4 × 15 =-60
× + × ÷
12 + 8 + 14 - 5 =29
+ + - ×
13 - 7 - 9 - 11 =-14
+ - + -
3 × 16 - 10 - 6 =32

= 28 = 1 = 57 = 27

5 The Development Tool

To run the application a lot of activities are to be performed: to deploy the application, to launch the
Service program on each workstation and finally to launch the Console on the host station.

To assist these activities, a development tool was created. The Service program becomes a servlet
and we use the apache-tomcat as a servlet container Web server. The Console program which starts the
dispatcher makes the requests to the Service servlets, too.

To the network of workstations it is associated a second TSpaces server to keep the names of the
involved computers - denoted as the tuple space of the network.

The tool contains two parts:

• The Advertiser serves to state the network of workstations. Using the Advertiser a computer is
linked to the network of workstations to perform a parallel-distributed computing.

 208

Ernest Scheiber

�

The graphical interface of the Advertiser allows to

– Declare the computer as a member of the network of workstations - i.e. a tuple with the name
of the computer is written into the tuple space of the network;

– Remove the computer from the network - i.e. remove the above define tuple from the tuple
space of the network;

– Show the list of the computers in the network of workstations.

Figure 2: The window of the Advertiser tool.

• The Developer allows to

– Generate the folders of the application;

– Compile and archive the service part of the application;

– Deploy the service part to the workstations of the network. The deployment is done with the
apache-tomcat-deployer;

– Compile the console part of the application.

– Launch the console to run. In the Console class the request are programmed using the apache
commons-httpclient software;

– Undeploy the service part of the application.

These targets are executed through apache-ant.

The Developer is installed only on the host workstation.

A number of parameters are required: The name of the application, The host and the port of the
application tuple space, The number of the worker threads, The path to the apache-ant and The
username and password for the manager application of apache-tomcat.

The list of the computers name in the network is required, too. This list may be generated with
the Advertiser, contained in the Developer, too.

The scenario to run a parallel-distributed application using the framework involves:

1. To set up the network of workstations:

(a) On launches the tuple space associated to the network;

 209

Parallel-Distributed Programming Tool for the Linda Programming Model

�

(b) On each workstation starts the apache-tomcat Web server and, with the Advertiser, declares
the availability of that computer to join to the network of workstations.

2. Using the Developer, on the host workstation, we can install, deploy, start the tuple space associated
to the application and execute the parallel-distributed computation launching the Console.

The current version of the framework may be downloaded from the author’s Web page http:
//cs.unitbv.ro/site/pagpers/scheiber. The archive contains several other examples: a numerical
integration, quicksort, the queens’ problem, the graphic representation of the Mandelbrot set, the dinning
philosophers’ problem.

Conclusions. An implementation of the Piranha model for a parallel-distributed application is
developed. The implementation does not introduce a new API but requires certain program structure.
In addition we have created a tool to assist the development of an application that can be ported to any
Java enabling platform. As a drawback of our approach is that, if a workstation dies then a running
application never finishes. We intend to work on this problem. The security constraints are that of the
apache-tomcat Web server.

References

[1] R. BISSELING, Parallel Scientific Computation. A structured approach using BSP and MPI, Oxford
Univ. Press, 2004.

[2] G. A. PAPADOPOULOS, F. ARBAB, Coordination models and languages. CWI Report, SEN-
R9834, 1998.

[3] SCHEIBER E., 2007, A TSpaces Based Framework for Parallel - Distributed Applications. Knowl-
edge Engineering Principles and Techniques 1 (2007), Cluj University Press, 341-345.

[4] SCHEIBER E., 2009, A Parallelization scheme of Some Algorithms. Knowledge Engineering Princi-
ples and Techniques 2 (2009), Studia Universitas Babeş-Bolyai, Informatica, 244-248.

[5] M. SNIR, D. OTTO, S. HUSS-LEDERMAN, D. WALKER, J. DONGARRA, MPI: The Complete
Reference. MIT Press, Cambridge, MA, 1996.

[6] * * * , TSpaces-User’s Guide & Programmer’s Guide, Distributed with the software, Version 2.1.2,
2000.

Ernest Scheiber
Transilvania University of Braşov
Faculty of Mathematics and Computer Science
str. Iuliu Maniu 50
ROMANIA
E-mail: scheiber@unitbv.ro

 210

