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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract 

This research treats power optimization for energy converters, such like thermal, solar and chemical 
engines. Thermodynamic analyses lead to converter’s efficiency and limiting power. Steady and dynamic 
systems are investigated. Static optimization of steady systems applies the differential calculus or Lagrange 
multipliers, dynamic optimization of unsteady systems uses variational calculus and dynamic programming. 
The primary result of the first is the limiting value of power, whereas that of the second is a  total generalized 
work potential. The generalizing quantity depends on thermal coordinates and a dissipation index, h, i.e. the 
Hamiltonian of the problem of minimum entropy production. It implies stronger bounds on work delivered or 
supplied than the classical work of thermodynamics. 

1 Introduction 

In this research we treat power limits in static and dynamical energy systems driven by fluids that are 
generally restricted in their amount or magnitude of flow, i.e. are certain resources. A power limit is an 
upper (lower) bound on power produced (consumed) in the system. A resource is a valuable substance 
or energy used in a process; its value can be quantified by specifying its exergy, a maximum work 
obtained when the resource relaxes to the equilibrium. Reversible relaxation of the resource is 
associated with the classical exergy. When dissipative phenomena prevail generalized exergies arise 
which quantify deviations of the system’s efficiency from the Carnot efficiency. An exergy is obtained 
as the principal component of solution to the variational problem of extremum work under suitable 
boundary conditions. Other components of the solution are the optimal trajectory and optimal control. In 
thermal systems without chemical changes the trajectory is characterized by the temperature of the 
resource fluid, T(t), whereas the control, is an innovative quantity, called Carnot temperature T’(t).  This 
control was defined in our previous work [1,2] to get rid less suitable while more popular controls such 
as heat flux or temperatures of circulating fluids (Fig.1) which are constrained by balances of mass and 
entropy. In opposition to these conventional controls Carnot temperature is a free control. For the engine 
in Fig. 1 Carnot temperature is 
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Whenever T’(t) and μ’(t) differ from T(t) and μ(t) then the power-producing resource relaxes with a 
finite rate, and with an efficiency vector different from the perfect efficiency. Only when T’ = T and 
μ’= �μ the efficiency is pefect, but this corresponds with an infinitely slow relaxation rate of the resource 
to the thermodynamic equilibrium. Carnot variables T’ and μ’ are two free, independent control 
variables applied in power maximization of steady and dynamical generators.  
  
The structure of this paper is as follows. Section 2 discusses various aspects of optimization with 
resources. Properties of steady systems are outlined in Sec. 3, whereas those of dynamical ones - in Sec. 
4. Section 5 develops analyses of power yield with resource downgrading (in the first reservoir) and 
outlines origin of “work potentials” for finite rates. Sections 6-8 discuss various Hamilton-Jacobi-
Bellman equations (HJB equations) for optimal work functions, as solutions of power yield problems. 
Extensions for fuel cells as electrochemical flow systems are outlined in Sec. 9.  
 
The size limitation of the paper does not allow for inclusion of all derivations to make the paper self-
contained, thus the reader may need to turn to some previous works, [1] - [5] of which ref. [3] discusses 
convergence of numerical algorithms solving HJB equations and role of Lagrange multipliers. 

2 Thermodynamic Aspects of Finite Resources 

Limited amount or flow of a resource working in an engine causes a decrease of the resource potential 
in time (chronological or spatial). This is why studies of the resource downgrading apply the dynamical 
optimization methods. From the optimization viewpoint, dynamical process is every one with sequence 
of states, developing either in the chronological time or in (spatial) holdup time. The first group refers to 
unsteady processes in non-stationary systems, the second group may involve steady state systems.  
 
In a process of energy production two resting reservoirs do interact through an energy generator 
(engine). In this process power flow is steady only when two reservoirs are infinite. When one, say, 
upper, reservoir is finite, its potential must decrease in time, a result from the energy balance. Any finite 
reservoir is thus a resource reservoir. It is the resource property that leads to the dynamical behavior of 
the fluid and its relaxation to the equilibrium with an infinite lower reservoir (usually the environment).  
 
Alternatively, fluid at a steady flow can replace resting upper reservoir. The resource downgrading is 
then a steady-state process in which the resource fluid flows through a pipeline or stages of a cascade 
and the fluid’s state changes along a steady trajectory. As in the previous case the trajectory is a curve 
describing the fluid’s relaxation towards the equilibrium between the fluid and the lower reservoir (the 
environment). This is sometimes called “active relaxation” as it is associated with the simultaneous 
work production. It should be contrasted with “dissipative relaxation”, a well-known, natural process 
between a body or a fluid and the environment without any power production. Relaxation (either active 
or dissipative) leads to a decrease of the resource potential (i.e. temperature) in time. An inverse of the 
relaxation process is the one in which a body or a fluid abandons the equilibrium. This cannot be 
spontaneous; rather the inverse process needs a supply of external power. This process refers to thermal 
upgrading of the resource, which can be accomplished with a heat pump. 

3 Power and Power Limits in Steady Systems  

 
The great deal of research on power limits published to date deals with stationary systems, in which case 
both reservoirs are infinite. To this case refer steady-state analyses of the Chambadal-Novikov-Curzon-
Ahlborn engine (CNCA engine [6]), in which energy exchange is described by Newtonian law of 
cooling, or the Stefan-Boltzmann engine, a system with the radiation fluids and the energy exchange 
governed by the Stefan-Boltzmann law [7]. 
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Fig. 1. A scheme of an engine controlled by a suitable choice of Carnot variables T’and μ’. 
 
Due to their stationarity (caused by the infiniteness of both reservoirs), controls maximizing power are 
lumped to a fixed point in the state space. In fact, for the CNCA engine, the maximum power point may 
be related to the optimum value of a free (unconstrained) control variable which can be efficiency η or 
Carnot temperature T’. In terms of the reservoirs temperatures T1 and T2 and the internal irreversibility 
factor Φ one finds 21

21=′ /)( �TTTopt  [4]. For the Stefan-Boltzmann engine exact expression for the optimal 

point cannot be determined analytically, yet, this temperature can be found graphically from the chart 
P=f(T’). Moreover, the method of Lagrange multipliers can successfully be applied [8]. As their 
elimination from a set of resulting equations is quite easy, the problem is broken down to the numerical 
solving of a nonlinear equation for the optimal control T’. Finally, the so-called pseudo-Newtonian 
model [4, 5], which uses state or temperature dependent heat exchange coefficient, α(T3), omits, to a 
considerable extent, analytical difficulties associated with the Stefan-Boltzmann equation. Applying this 
model in the so-called symmetric case, where both reservoirs are filled up with radiation, one shows that 
the optimal (power maximizing) Carnot temperature of the steady radiation engine is that for the CNCA 
engine, i.e. [4]. This equation is, in fact, a good approximation under the assumption of transfer 
coefficients dependent solely on bulk temperatures of reservoirs. 

4 Power and Its Limits in Dynamical Systems  

Dynamical energy yield requires the knowledge of an extremal curve rather than an extremum point, i.e. 
is associated with application of variational metods in place of static optimization methods. For 
example, the use of the pseudo-Newtonian model to quantify the dynamical energy yield from radiation, 
gives rise to an extremal curve describing the radiation relaxation to the equilibrium. This curve is non-
expotential, the consequence of the nonlinear properties of the relaxation dynamics. Non-expotential are 
also other curves describing the radiation relaxation, e.g. those following from exact models using the 
Stefan-Boltzmann equation (symmetric and hybrid, [4,5]).  
 
Analytical difficulties associated with dynamical optimization of nonlinear systems are severe; this is 
why diverse models of power yield and diverse numerical approaches are applied. Optimal (e.g. power-
maximizing) relaxation curve T(t) is associated with the optimal control curve T’(t); they both are 
components of the dynamic optimization solution to a continuous problem. In the corresponding discrete 
problem, formulated for numerical purposes, one searches for optimal temperature sequences {Tn} and 
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{T’n}. Various discrete optimization methods involve: direct search, dynamic programming, discrete 
maximum principle, and combinations of these methods.  
 
Minimum power supplied to the system is described by function sequences Rn(Tn, tn), whereas maximum 
power produced – by functions Vn(Tn, tn). Importantly, energy limits of dynamical processes are 
connected with the exergy functions, the classical exergy and its rate-dependent extensions. To obtain 
classical exergy from power functions it suffices to assume that the thermal efficiency of the system is 
identical with the Carnot efficiency. Yet, non-Carnot efficiencies lead to generalized exergies. The latter 
depend not only on the classical thermodynamic variables but also on their rates. These generalized 
exergies refer to state changes in a finite time, and can be contrasted with the classical exergies that 
refer to reversible quasistatic processes evolving infinitely slowly. The benefit obtained from 
generalized exergies is that they define stronger energy limits than those predicted by classical exergies. 
In this case Fig. 1 above is suitably applied to calculation of dynamical systems. Introduced is a cascade 
of engines, where each stage is controlled by suitable choice of Carnot variables T’ and μ’. The system 
stage comprises: a resource at flow, engines and the environment. At each stage power is generated and 
total flux of resulting power is maximized. In the chemical case the control is the propelling mass flux 
of the fuel flowing to the power generator. 

5 Finite-Rate Exergies as Work Potentials  

Two different works, the first associated with the resource downgrading during its relaxation to the 
equilibrium and the second – with the reverse process of resource upgrading, are essential. During the 
approach to the equilibrium engine mode takes place in which work is released, during the departure- 
heat-pump mode occurs in which work is supplied. Work W delivered in the engine mode is positive by 
assumption (“engine convention”). Sequence of irreversible engines such as the one in Fig.1 (CNCA or 
Stefan-Boltzmann engines) serves to determine a rate-dependent exergy extending the classical exergy 
for irreversible, finite rate processes. Before maximization of a work integral, process efficiency η � has 
to be expressed as a function of state T and a control, i.e. energy flux q or rate dT/dτ, to assure the 
functional property (path dependence) of the work integral. The integration must be preceded by 
maximization of power or work at flow (the ratio of power and flux of driving substance) w to assure an 
optimal path. The optimal work is sought in the form of a potential which depends on the end states and 
duration. For appropriate boundary conditions, the principal function of extremum work coincides with 
the notion of an exergy, the function that characterizes quality of resources. 
 
The idea of an infinite number of infinitesimal CNCA steps, necessary for exergy calculations, can be 
developed. Each step is a work-producing (consuming) stage with the energy exchange between two 
fluids and the thermal machine through finite�conductances”. For the radiation engine it follows from 
the Stefan-Boltzmann law that the effective transfer coefficient α�� of the radiation fluid is necessarily 

temperature dependent, α1=� 3
1∝ T �� The second or low-T fluid represents the usual environment, as 

defined in the exergy theory. This fluid possesses its own boundary layer as a dissipative component, 
and the corresponding exchange coefficient is α2. In the physical space, the flow direction of the 
resource fluid is along the horizontal coordinate l. The optimizer’s task is to find an optimal temperature 
of the resource fluid along the path that extremizes the work consumed or delivered.  
 
Total power obtained from an infinite number of small engines is determined as the Lagrange functional  

�� ′−=′= 0

f

i

f

i

t

t

t

t

fi dtTTT�TcGdtTTfW ��� ),()(),(][ T,T         (1) 

where f0 is power generation intensity, G� - resource flux, c(T)-specific heat, η(T, T’) -efficiency in terms 
of state T and control T, further T � enlarged state vector comprising state and time,  t �time variable 
(residence time or holdup time) for the resource contacting with heat transfer surface. Sometimes one 
uses a non-dimensional time τ, identical with the so-called number of the heat transfer units. Note that, 
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for constant mass flow of a resource, one can extremize power per unit mass flux, i.e. the quantity of 
work dimension called “work at flow”. In this case Eq. (1) describes a problem of extremum work. 
When the resource flux is constant a work functional describing the thermal exergy flux per unit flux of 
resource can be obtained from Eq. (1) 
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Note that the independent variable in this equation is T, i.e. it is different than that in Eq. (1). The 
function f0 in Eq. (1) contains thermal efficiency function, η, described by a practical counterpart of the 
Carnot formula. When T > Te, efficiency η  decreases in the engine mode above ηC and increases in the 
heat-pump mode below ηC. At the limit of vanishing rates, dT/dt = 0 and TT →′ . Then work of each 
mode simplifies to the common integral of the classical exergy.  For the classical thermal exergy 
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Nonlinearities can have both thermodynamic and kinetic origins; the former refer, for example, to state 
dependent heat capacity, c(T), the latter to nonlinear energy exchange. Problems with linear kinetics 
(Newtonian heat transfer) are an important subclass. In problems with linear kinetics, fluid’s specific 
work at flow, w, is described by an equation 
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is non-dimensional time of the process. Equation (5) assumes that a resource fluid flows with velocity v 
through cross-section F and contacts with the heat transfer exchange surface per unit volume av [1]. 
Quantity τ is identical with the so-called number of the heat transfer units.  
 
Solutions to work extremum problems can be obtained by: 
a) variational methods, i.e. via Euler-Lagrange equation  
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In the example considered above, i.e. for a linear thermal system  
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which corresponds with the optimal trajectory 
fififif TTTTTT ττττ /)/(),,,( =  .         (8) 

(τi =0 is assumed in Eq. (8).) However, the solution of the Euler-Lagrange equation does not provide 
any information about the optimal function V. Hence another method must be used as described below.  
 b) dynamic programming via Hamilton-Jacobi-Bellman equation (HJB equation, [9]) for the ‘principal 
function’ (V or R), also called extremum work function.  This is described below. 

6 HJB Equations for Selected Power Systems  

For the linear kinetics considered 
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The extremal work function V is a function of the final state and total duration. After evaluation of 
optimal control and its substitution to Eq. (9) one obtains a nonlinear equation 
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which is the Hamilton-Jacobi equation of the problem. Its solution can be found by the integration of 
work intensity along an optimal path, between limits Ti and Tf. A reversible, path independent part of V 
is the classical exergy A(T, Te, 0).  Details of models of multistage power production in sequences of 
engines are known from previous papers [1]-[5].  
 
We shall display further some Hamilton-Jacobi-Bellman equations for power systems described by 
nonlinear kinetics. A suitable example is a radiation engine whose power integral is approximated by a 
pseudo-Newtonian model of radiative energy exchange associated with optimal function 
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where υ =α(T3)(T’-T). An alternative form uses Carnot temperature T’ explicit in υ [5]. Optimal power (11) 
becomes 

dt
T

T
TcTcGW

T

T

e

vmhmm υ�
0

�
�
�

�
�
�
�

�
−−= )()(�� dt

T
�

TT
TcGT vmm

T

T

e
�
�
�

�
�
�
�

�

+
−1+

+
−

2

�
0

)( )(
)(

)(
χυ

υ

χυ

χυ� .     (12) 

This process is described by a pseudolinear kinetics dT/dt = f(T, T’) consistent with υ =α(T3)(T’-T) and 
a general form of HJB equation for work function V in the form 
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where f0 is defined as the integrand of Eq. (11) or (12). 
 
A more exact model or radiation conversion relaxes the assumption of the pseudo-Newtonian transfer 
and applies the Stefan-Boltzmann law. For a symmetric model of radiation conversion (both reservoirs 
composed of radiation)  
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The coefficient is 1−01−
= )( mhv pcaσβ  is related to molar constant of photons density 0

mp  and Stefan-

Boltzmann constant σ. In the physical space, power exponent a=4 for radiation and a=1 for a linear 
resource. With a state equation 
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[5] applied in general Eq. (13) we obtain a HJB equation 
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Dynamics (15) is the characteristic equation for Eq. (16). 
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For a hybrid model of radiation conversion (upper reservoir composed of the radiation and lower 
reservoir of a Newtonian fluid, [5]) the power is (17) 
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and the corresponding Hamilton-Jacobi-Bellman equation is 
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7 Some Analytical Solutions of HJB Equations  

In all HJB equations extremized expressions are some Hamiltonians, H. The maximization  of  H leads 
to two equations. The first expresses optimal control T' in terms of T and z = - ∂V/∂T. For the linear 
kinetics of Eq. (9) we obtain 
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whereas the  second  is  the  original equation (9) without maximizing operation 
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To obtain optimal control function T'(z, T) one should solve the second equality in equation (19) in 
terms of T', The result is Carnot control T' in terms of T and z = - ∂V/∂T, 
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This  is next substituted into (20); the result is the nonlinear Hamilton-Jacobi equation 
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which contains the energylike (extremum) Hamiltonian  
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Expressing extremum Hamiltonian (23) in terms of state variable T and Carnot control T ' yields an 
energylike function satisfying the following relations 
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E is the Legendre transform of the work lagrangian l0 = - f0 with respect to the rate u = dT/dτ . 
 
Assuming a numerical value of the Hamiltonian, say h, one can exploit the constancy of H to eliminate 
∂V/∂T. Next combining equation H=h with optimal control (21), or with an equivalent result for energy 
flow control u=T ‘-T  
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yields optimal rate u= T� in terms of temperature T and the Hamiltonian constant h. An optimal trajectory 
which applies to systems with internal dissipation (factor Φ) and applies to the pseudo-Newtonian 
model of radiation has the form 
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where ξ � � �defined in the above equation, is an intensity index and hσ=h/T. This holds for the temperature 
dependent heat capacity cv(T)=4a0T

3. Positive ξ refer to heating of the resource fluid in the heat-pump 
mode, and the negative - to cooling of this fluid in the engine mode. Thus, the optimal power is 
associated with the temperature relaxation 
   

.     T�TT ),,( σξ �=�            (27) 
 

Equations (26 and (27) describe the optimal trajectory in terms of  variables T and h. The related 
optimal (Carnot) control is 

               ( )TT�T ),,( σξ �+1=′           (28) 
 
Thus, in comparison with the linear systems, the pseudo-Newtonian relaxation is not exponential. 

9 Some Data for Electrochemical Systems  

In chemical engines mass transports participate in transformation of chemical affinities into mechanical 
power [10-13]. Yet, in chemical and electrochemical engines generalized reservoirs are present, capable 
of providing both heat and substance. Fuel cells are electrochemical engines propelled by chemical 
reactions. Units producing power are engines, whereas those which consume power are electrolyzers. 
Their main advantage in comparison to heat engines is that their efficiency is not a major function of 
device size. Figure 2 illustrates a solid oxide fuel cell (SOFC) which works in the power yield mode.  

 
Fig. 2. Principle of a solid oxide fuel cell 

 
The basic structure of fuel cells includes electrolyte layer in contact with a porous anode and cathode on 
either side. Gaseous fuels are fed continuously to the anode (negative electrode) compartment and an 
oxidant (i.e., oxygen from air) is fed to the cathode (positive electrode) compartment. Electrochemical 
reactions at the electrodes produce an electric current. The effect is the oxidation of fuel, e.g. hydrogen, 
and reduction of oxidant, e.g. oxygen. This makes fuel cells similar to an engine in Fig. 1.  
 
Voltage lowering in fuel cells below the idle run value is a suitable measure of their imperfection, Fig.3. 
With the concept of effective resistances operating voltage of a fuel cell can be represented as the 
departure from the idle run voltage E0 [14] 
 

 V = E0 - Vint= E -Vact -Vconc - Vohm            (29) 
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The losses, called polarization, include three main sources: activation polarization (Vact), ohmic 
polarization (Vohm), and concentration polarization (Vconc). Large number of approaches for calculating 
polarization losses has been reviewed [15]. Activation and concentration polarization occurs at both 
electrodes locations, while the resistive polarization represents ohmic losses. As the losses increase with 
current, the initially increasing power finally begins to decrease, so that power maxima emerge (Fig. 3). 
 
The voltage equation used in [14] for the purpose of the power calculation is 
: 
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where a limiting current is introduced defined by an equation 
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in which C1 is a experimentally determined parameter. Power density is simply the product of voltage V 
and current density i. In an ideal situation (no losses) the cell voltage is defined by the Nernst equation. 
Yet, while the first term of Eq. (30) defines the voltage without load, it nonetheless takes into account 
losses of the idle run, which are the effect of flaws in electrode constructions and other imperfections 
which cause that the open circuit voltage will in reality be lower than the theoretical value. Activation 
polarization Vact is neglected in this model. The losses include ohmic and concentration polarization. 
The second term of Eq. (30) quantifies ohmic losses associated with electric resistance of electrodes and 
flow resistance of ions through the electrolyte. The third term refers to mass transport losses. Quantity iL 
is the current arising when the fuel is consumed in the reaction with the maximum possible feed rate.  
 

 
 
Fig.3. Voltage-current density and power-current density characteristics of the SOFC for various temperatures. 
Continuous lines represent the Aspen PlusTM calculations testing the model consistency with the experiments. 
These lines were obtained in Wierzbicki’s MsD thesis supervised by S. Sieniutycz and J. Jewulski [14]. Points 
refer to experiments of Wierzbicki and Jewulski in Warsaw Institute of Energetics ([14] and ref [18] therein). 
 
In the literature there are many experimental and theoretical examples showing power maxima in fuel 
cells and proving the suitability of the theory to chemical and electrochemical systems. For example, 
data obtained in L. Chen’s research group [15] are consistent with those of Wierzbicki [14]. 

10 Concluding Remarks  

This research provides data for power production bounds (limits) which are enhanced in comparison 
with those predicted by the classical thermodynamics. When infinite reservoirs assure constancy of 
chemical potentials, problems of extremum power are static optimization problems. For finite reservoirs, 
however, amount and chemical potential of an active reactant decrease in time, and considered problems 
are those of dynamic optimization and variational calculus. In fact, thermostatic bounds are often too far 
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from reality to be really useful. Generalized bounds, obtained here by solving HJB equations, are 
stronger than those of thermostatics. As opposed to classical thermodynamics, they depend not only on 
state changes but also on irreversibilities, ratios of stream flows, stream directions, and mechanism of 
all transfers. The methodology familiar for thermal machines can be applied to electrochemical engines. 
Extensions are available for multicomponent, multireaction chemical systems [11]).   
 
A real work supply can only be larger than the finite-rate bound obtained by the optimization. Similarly, 
the real work delivered from a nonequilibrium work-producing system (with the same boundary states 
and duration but with a suboptimal control) can only be lower than the corresponding finite-rate bound. 
Indeed, the two bounds, for a process and its inverse, which coincide in thermostatics, diverge in 
thermodynamics. With thermokinetic models, we can confront and surmount the limitations of applying 
classical thermodynamic bounds to real processes.  
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