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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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The method based on support vectors aims to increase the efficiency in approximating multidi-
mensional functions. The basic idea in a SVM approach is twofold. On one hand it aims to determine
a classifier that minimizes the empirical risk, that is to encode the learning sequence as good as possi-
ble with respect to a certain architecture, and the other hand to improve the generalization capacity
by minimizing the generalization error. In case of non-linear separable data the SVM is combined
with kernel based technique which transforms the data in a linear separable data by mapping the
initial data on to higher dimensional space of features. This mapping is performed in terms of special
tailored kernels that allow to keep the computations at a reasonable complexity level.

The aim of the research reported in the paper is to obtain an alternative approach in using SVM
in case of non-linearly separable data based on using the k-means algorithm instead of the standard
kernel based approach. The potential of the proposed approach is pointed out on experimental basis
in the final section of the paper. The tests were performed on data generated from multi-dimensional
normal repartitions yielding to linearly separable and non-linearly separable samples respectively.
The results encourage the research toward integrating the k-means technique in a SVM-based learn-
ing scheme.

1 Introduction

The Support Vector Machine (SVM) is a relatively new concept in machine learning and it was introduced
by Vapnik ([10], [11]). In designing a classifier, two main problems have to be solved, on one hand the
option concerning a suitable structure and on the other hand the selection of an algorithm for parameter
estimation.

The algorithm for parameter estimation performs the optimization of a convenable selected cost
function with respect to the empirical risk which is directly related to the representativeness of the
available learning sequence. The choice of the structure is made such that to maximize the generalization
capacity, that is to assure good performance in classifying new data coming from the same classes. In
solving these problems one has to establish a balance between the accuracy in encoding the learning
sequence and the generalization capacities because usually the over-fitting prevents the minimization of
the empirical risk.

2 Supervised learning using SVM

Let us assume that the data is represented by examples coming from two categories or classes such that
the true provenance class for each example is known. We refer such a collection of individuals as being a
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supervised learning sequence, and it is represented as

S=
{

(xi, yi) | xi = (xi1, . . . , xid)
T ∈ R

d , yi ∈ {−1, 1} , i = 1, N
}

. (1)

The values 1, −1 are taken as labels corresponding to the classes. We say the data is linearly separable
if there exists a linear discriminant function g : Rd −→ R,

∀x , g(x) = b + w1x1 + . . . + wdxd , (2)

where x = (x1, . . . , xd) ∈ R
d, such that for any (xi, yi) ∈ S, yig (xi) > 0.

Denoting by w = (w1, . . . , wd)
T

the vector whose entries are the coefficients of g, we say that S is
separated without errors by the hyperplane

Hw,b : wT x + b = 0 . (3)

Obviously all examples coming from the class of label 1 belong to the positive semi-space, and all examples
coming from the class of label −1 belong to the negative semi-space defined by Hw,b. For this reason,
Hw,b is called a solution of the separating problem.

In a SVM-based approach, the search for a solution Hw,b is usually formulated as a constraint opti-

mization problem on the objective function Φ(w) =
1

2
‖w‖2,

{
min Φ(w)

yi

(
wT xi + b

) ≥ 1 , i = 1, N .
(4)

If w∗ is a solution of (4), then Hw∗,b∗ is called an optimal separating hyperplane, where the computation
of w∗ and b∗ is carried out using the following algorithm

Algorithm SV M1 ([9])

Input: S =
{

(xi, yi) | xi ∈ R
d , yi ∈ {−1, 1} , i = 1, N

}
Step 1. Compute the matrix D = (dik) of entries, dik = yiyk (xi)

T
xk , i, k = 1, N ;

Step 2. Solve the constrained optimization problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α∗ = arg

(
max

α∈RN

(
αT

1− 1

2
αT Dα

))
,

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiyi = 0 ,

(5)

If α∗i > 0 then xi is called the support vector.
Step 3. Select two support vectors xr, xs such that α∗r > 0 , α∗s > 0 , yr = −1 , ys = 1.

Step 4. Compute the parameters w∗, b∗ of the optimal separating hyperplane,
and the width of the separating area ρ (w∗, b∗),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w∗ =
N∑

i=1

α∗i yixi ,

b∗ = −1

2
(w∗)T

(xr + xs) ,

ρ (w∗, b∗) =
2

‖w∗‖

(6)

Output: w∗, b∗, ρ (w∗, b∗).

A linear separable sample is represented in figure 1a. The straight lines d1, d2, d3 and d4 are solutions
for the separating problem of S, d4 corresponds to the optimal separating hyperplane. The examples
placed at the minimum distance to the optimum separating hyperplane are the support vectors.
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Figure 1: a) Optimal separating hyperplane; b) Classification errors.

In case of non-linearly separable samples the idea is to determine a separating hyperplane such that
the number of misclassified examples is minimized.

The problem of designing the optimal hyperplane in case of non-linearly separable samples has been
approached several ways. The approach introduced by Cortes and Vapnik ([3]) uses the error function

Φσ(ξ) =
N∑

i=1

ξσ
i , (7)

where the slack variables ξi , 1≤ i≤N , are taken as indicators for the classification errors (see figure 1b),
and σ is a positive real number.

The optimality is expressed in terms of the objective function Φ : Rd ×R
N −→ [0,+∞)

Φ(w, ξ) =
1

2
‖w‖2 + c F

(
N∑

i=1

ξσ
i

)
=

1

2

n∑
j=1

w2
j + c F

(
N∑

i=1

ξσ
i

)
, (8)

where c is a given positive constant, ξ = (ξ1, . . . , ξN ), and F is a monotone convex function, F (0) = 0.
The idea is to compute a subset of S, say {(xi1 , yi1) , . . . , (xik

, yik
)}, by minimizing Φσ(ξ), such that

there exists an optimal hyperplane for S\ {(xi1 , yi1) , . . . , (yik
, yik

)}. This optimal hyperplane is referred
as the soft margin hyperplane ([3]).

The soft margin hyperplane is a solution of the constrained optimization problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arg

(
min

w∈Rd
(Φ(w, ξ))

)

yi

(
wT xi + b

) ≥ 1− ξi , ∀ 1 ≤ i ≤ N ,
ξi ≥ 0 , ∀ 1 ≤ i ≤ N ,

(9)

The samples represented in figure 1b, correspond to the non-linearly separable case. The soft margin
hyperplane, the separating area, and slack variables are indicated in figure 1b.

The computation of soft margin hyperplane is carried out by the following algorithm.

Algorithm SV M2 ([9])

Input: S =
{

(xi, yi) | xi ∈ R
n , yi ∈ {−1, 1} , i = 1, N

}
, c ∈ (0,∞);

Step 1. Compute the matrix D = (dik) of entries, dik = yiyk (xi)
T

xk , i, k = 1, N ;

Step 2. Solve the constrained optimization problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α∗ = arg

(
max

α∈RN

(
αT

1− 1

2
αT Dα− (αmax)

2

4 c

))
,

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiYi = 0 ,

(10)
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where αmax = max {α1, . . . , αN}
Step 3. Select two support vectors xr, xs such that α∗r > 0 , α∗s > 0 , yr = −1 , ys = 1.

Step 4. Compute the parameters w∗, b∗ of the soft margin hyperplane,
and the width of the separating area ρ (w∗, b∗), according to (6).

Output: w∗, b∗, ρ (w∗, b∗).

3 Unsupervised learning (clustering) using the k-means method

Center-based clustering algorithms are very efficient for clustering large databases and high-dimensional
databases. They have own objective functions which define how good a clustering solution is, the goal
being to minimize the objective function. Clusters found by center-based algorithms have convex shapes
and each cluster is represented by a center. The k-means algorithm introduced by MacQueen ([8]) was
designed to cluster numerical data, each cluster having a center called the mean.

Let D = {x1, . . . , xN} ⊂ R
d be the data set, k a given positive integer, and C1, . . . , Ck pairwise disjoint

clusters of D, that is,

k⋃
i=1

Ci = D, Ci ∩ Cj , ∀ i �= j. If we denote by μ (Ci) the center of Ci then the inertia

momentum (error) is expressed by

ε =

k∑
i=1

∑
x∈Ci

d2 (x, μ (Ci)) , (11)

where d is a convenable distance function on R
d. In the following we take d as being the Euclidean

distance on R
d, d(x, y) = ‖x− y‖.

The k-means methods proceeds, for a given initial k clusters, by allocating the remaining data to
the nearest clusters and then repeatedly changing the membership of the clusters according to the error
function until the error function does not change significantly or the membership of the clusters no longer
changes.

The k-means algorithm can be treated as an optimization problem where the goal is to minimize a
given objective function under certain constrains.

We denote by C the set of all subsets of R
d of cardinal k; any particular Q = {q1, . . . , qk} ∈ C is called

a set of possible centers.
A system of k pairwise disjoint clusters of D can be obviously represented in terms a matrix

W = (wil) ∈MN×k (R) such that

(i) wil ∈ {0, 1} , i = 1, N , l = 1, k

(ii)

k∑
l=1

wil = 1 , i = 1, N .
(12)

The k-means algorithm can be formulated as the constrained optimization problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
W∈MN×k(R), Q∈C

P (W,Q)

wil ∈ {0, 1} , i = 1, N , l = 1, k ,
k∑

l=1

wil = 1 , i = 1, N ,

(13)

where the objective function is defined as

P (W,Q) =
N∑

i=1

k∑
l=1

wil ‖xi − ql‖2 . (14)

The problem (13) can be solved by decomposing it into two simpler problems P1 and P2, and then
iteratively solving them, where
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P1. Fix Q = Q̂ ∈ C and solve the reduced constrained optimization problem for P
(
W, Q̂

)
.

P2. Fix W = Ŵ ∈MN×k (R) and solve the reduced unconstrained optimization problem for P
(
Ŵ ,Q

)
.

The solutions of these problems can be derived by straightforward computations, and they are given
by the following theorems:

Theorem 1 For any fixed Q̂ = {q̂1, . . . , q̂k} a set of centers, the function P
(
W, Q̂

)
is minimized if and

only if W satisfies the conditions

wil = 0⇐⇒ ‖xi − q̂l‖ > min
1≤t≤k

‖xi − q̂t‖ ,

wil = 1 =⇒ ‖xi − q̂l‖ = min
1≤t≤k

‖xi − q̂t‖ ,

k∑
j=1

wij = 1 , for any i = 1, N , l = 1, k.

Note that in general, for any given Q̂ there are more solutions of W (0) type because any particular
data xi can be at minimum distance to more than one center of Q̂.

Theorem 2 For any fixed Ŵ satisfying the constrains of (13), the function P
(
Ŵ , Q

)
is minimized if

and only if

ql =

N∑
i=1

ŵilxi

N∑
i=1

ŵil

, l = 1, k.

The k-means algorithm viewed as an optimization process for solving (13) is as follows

The algorithm k-MOP

Input: D - the data set,
k - the pre-specified number of clusters,
d - the data dimensionality,
T - threshold on the maximum number of iterations.

Initializations: Q(0), t ←− 0
Solve P

(
W,Q(0)

)
and get W (0)

sw ←− false
repeat

Ŵ ←− W (t)

solve P
(
Ŵ , Q

)
and get Q(t+1)

if P
(
Ŵ ,Q(t)

)
= P

(
Ŵ , Q(t+1)

)
then

sw ←− true
output

(
Ŵ , Q(t+1)

)
else

Q̂←− Q(t+1)

solve P
(
W (t), Q̂

)
and get W (t+1)

if P
(
W (t), Q̂

)
= P

(
W (t+1), Q̂

)
then

sw ←− true
output

(
W (t+1), Q̂,

)
endif
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endif
t ←− t + 1

until sw or t > T.

Note that the computational complexity of the algorithm k-MOP is O(Nkd) per iteration. The

sequence of values P
(
W (t), Q(t)

)
where W (t), Q(t) are computed by k-MOP is strictly decreasing,

therefore the algorithm converges to a local minimum of the objective function.

4 The combined separating technique based on SVM and the

k-means algorithm

At first sight, it seems unreasonable to compare a supervised technique to an unsupervised one, mainly
because they refer to totally different situations. On one hand the supervised techniques are applied in
case the data set consists of correctly labeled objects, and on the other hand the unsupervised methods
deal with unlabeled objects. However our point is to combine SVM and k-means algorithm, in order to
obtain a new design of a linear classifier.

The aim of the experimental analysis is to evaluate the performance of the linear classifier resulted
from the combination of the supervised SVM method and the 2-means algorithm.

Our method can be applied to whatever data, either linear separable or non-linear separable. Obvi-
ously in case of non-linear separable data the classification can not be performed without errors and in
this case the number of misclassified examples is the most reasonable criterion for performance evalua-
tion. Of a particular importance is the case of linear separable data, in this case the performance being
evaluated in terms of both, misclassified examples and the generalization capacity expressed in terms
of the width of separating area. In real live situations, usually is very difficult or even impossible to
established whether the data represents a linear/non-linear separable set. In using the SV M1 approach
we can identify which case the given data set belongs to. For linear separable data, SV M1 computes
a separation hyperplane optimal from the point of view of the generalization capacity. In case of a
non-linear separable data SV M2 computes a linear classifier that minimizes the number of misclassified
examples. A series of developments are based on non-linear transforms represented be kernel functions
whose range are high dimensional spaces. The increase of dimensionality and the convenable choice of
the kernel aim to transform a non-linear separable problem into a linear separable one. The computation
complexity corresponding to kernel-based approaches is significantly large therefore in case the perfor-
mance of the algorithm SV M1 proves reasonable good it could be taken as an alternative approach of a
kernel-based SV M . We perform a comparative analysis on data consisting of examples generated from
two dimensional Gaussian distributions.

In case of a non-linear separable data set, using the k-means algorithm, we get a system of pairwise
disjoint clusters together with the set of their centers representing a local minimum point of the criterion
(13), the clusters being linear separable when k = 2. Consequently, the SV M1 algorithm computes a
linear classifier that separates without errors the resulted clusters.

Our procedure is described as follows

Input: S =
{

(xi, yi) | xi ∈ R
n , yi ∈ {−1, 1} , i = 1, N

}
Step 1. Compute the matrix D = (dik) of entries, dik = yiyk (xi)

T
xk , i, k = 1, N ;

sh←− true
Step 2. If the constrained optimization problem (5) does not have solution then

sh←− false
input c ∈ (0,∞), for hyperplane soft margin
Solve the constrained optimization problem (10)

endif
Step 3. Select xr, xs such that α∗r > 0 , α∗s > 0 , yr = −1 , ys = 1;

Compute the parameters w∗, b∗ of the separating hyperplane,
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and the width of the separating area, ρ (w∗, b∗) according to (6);

Compute the width of the separating area, ρ (w∗, b∗) =
2

‖w∗‖ ;

Step 4. if not sh then
compute nr err1 - the numbers of examples incorrect classified
compute err1 - error classification

endif

Step 5. The set D =
{

xi | xi ∈ R
d , i = 1, N

}
is divided in two clusters C1 and C2

using 2-means, marked out with y′i = 1 and y′i = −1 respectively.
Step 6. Apply algorithm SVM1 for

S ′ = {
(xi, y

′
i) | xi ∈ R

d , y′i ∈ {−1, 1} , i = 1, N
}

and obtain the parameters for optimal separating hyperplane: w∗1 , b∗1, ρ (w∗1 , b∗1)
compute nr err2 - the numbers of examples incorrect classified by 2−means
compute err2 - error classification after 2−means

Output: w∗, b∗, ρ (w∗, b∗), nr err1, err1, w∗1 , b∗1, ρ (w∗1 , b∗1), nr err2, err2.

5 Comparative analysis and experimental results

The experimental analysis is based on a long series of tests performed on linear/non-linear separable
simulated data of different volumes. The analysis aims to derive conclusions concerning:

1. The statistical properties (the empirical means, covariance matrices, eigenvalues, eigenvectors) of
the clusters computed by the 2-means algorithm as compared to their counterparts corresponding
to the true distributions they come from.

2. The comparison of the performances corresponding to the linear classifier resulted as a combination
of SVM and the 2-means algorithm described in section 4 and SV M2 in terms of the empirical
error.

3. The analysis concerning the influences of the samples sizes on the performance of the procedure
described in section 4.

4. The quality of cluster characterization in terms of the principal directions given by a system of unit
orthogonal eigenvectors of the sample covariance and empirical covariance matrices of the computed
clusters. The analysis aimed to derive conclusions concerning the contributions of each principal
direction, and for this reason, some tests were performed on data whose first principal component
is strongly dominant, and when the principal directions are of the same importance respectively.

The tests were performed on data generated from normal two-dimensional distributions
N (μi, Σi) , i = 1, 2 of volumes N1 and N2. The sample covariance matrices are denoted by μ̂i, Σ̂i , i =
1, 2. The centers and the empirical covariance matrices corresponding to the clusters computed by the
2-means algorithm are denoted by μi,Σi , i = 1, 2. We denote by Zi , Ẑi , Zi , i = 1, 2 orthogonal matrices

having as columns unit eigenvector of Σi , Σ̂i , Σi , i = 1, 2 respectively.

Test 1:

N1 =N2 =50, μ1 =

(
1
1

)
, Σ1 =

(
1 0
0 0.25

)
, μ2 =

(
2
3

)
, Σ2 =

(
0.5 0
0 0.5

)
.

The matrices Z1 , Z2 and their eigenvalues are

λ
(1)
1 =0.25 , λ

(1)
2 =1, Z1 =

(
0 1
1 0

)
, λ

(2)
1 =0.5 , λ

(2)
2 =0.5, Z2 =

(
1 0
0 1

)
.

The set is non-linear separable and it is represented in figure 2i)a. In this case we get

μ̂1 =

(
0.92
1.00

)
, Σ̂1 =

(
0.85 0.086
0.08 0.25

)
, μ̂2 =

(
1.98
2.87

)
, Σ̂2 =

(
0.44 0.09
0.09 0.63

)
.

the matrices Ẑ1 , Ẑ2 and their eigenvalues being
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λ̂
(1)
1 =0.24 , λ̂

(1)
2 =0.86, Ẑ1 =

(
0.14 −0.98
−0.98 −0.14

)
, λ̂

(2)
1 =0.40 , λ̂

(2)
2 =0.67, Ẑ2 =

( −0.92 0.38
0.38 0.92

)
.

Using the SVM2 with c = 70 we get the classification error class error = 14.70, the number of
misclassified samples n errors = 13 and the width of separating area is ρ = 0.61. The value of the error
coefficient defined as the ratio of the number of misclassified samples and total volume of the data is
c error = 0.13%. The soft margin line d1 is represented in figure 2i)b.
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Figure 2: i) The classification of the data set in test 1; ii) The classification of the data set in test 2.

By applying the 2-means algorithm we get clusters whose empirical means and covariances are

μ1 =

(
0.88
1.06

)
, Σ1 =

(
0.64 0.05
0.05 0.30

)
, μ2 =

(
2.13
2.96

)
, Σ2 =

(
0.41 −0.06
−0.06 0.56

)
.

The matrices Z1 , Z2 and their eigenvalues are

λ
(1)

1 =0.29 , λ
(1)

2 =0.65, Z1 =

(
0.14 −0.98
−0.98 −0.14

)
, λ

(2)

1 =0.39 , λ
(2)

2 =0.58, Z2 =

( −0.92 −0.37
−0.37 0.92

)
,

the number of misclassified samples is 10 and the clusters are represented in figure 2i)c.
Note that the computed centers and clusters are not influenced by the initial centers. In figure 2i)c

are represented the clusters computed by the 2-means algorithm for randomly selected initial centers.
The separating line d2 resulted by applying the SV M1 algorithm to the data represented by the clusters
computed by the 2-means algorithm is represented in figure 2i)d.

Test 2:

N1 = 100 , N2 =200, μ1 =

(
1
1

)
, Σ1 =

(
1 0
0 0.25

)
, μ2 =

(
2
3

)
, Σ2 =

(
1 0
0 0.25

)
,

λ
(1)
1 =0.25 , λ

(1)
2 =1, Z1 =

(
0 1
1 0

)
, λ

(2)
1 =0.25 , λ

(2)
2 =1, Z2 =

(
0 1
1 0

)
,

μ̂1 =

(
1.12
0.92

)
, Σ̂1 =

(
1.35 0.04
0.04 0.26

)
, μ̂2 =

(
2.01
3.00

)
, Σ̂2 =

(
0.86 0.05
0.05 0.25

)
,

λ̂
(1)
1 =0.26 , λ̂

(1)
2 =1.35, Ẑ1 =

(
0.03 −0.99
−0.99 −0.03

)
, λ̂

(2)
1 =0.25 , λ̂

(2)
2 =0.87, Ẑ2 =

(
0.09 −0.99
−0.99 −0.09

)
.

The data set is non-linear separable and it is represented in figure 2ii)a. Applying the SV M2 for
c = 5 we obtain the soft margin line d1 represented in figure 2ii)b and class error = 19.12, n errors = 13,
ρ = 0.25, c error = 0.043%.
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The clusters computed by the 2-means algorithm are represented in figure 2ii)c and their statistical
characteristics are

μ1 =

(
0.96
1.00

)
, Σ1 =

(
1.19 −0.10
−0.10 0.38

)
, μ2 =

(
2.10
3.00

)
, Σ2 =

(
0.76 −0.02
−0.02 0.28

)
,

λ
(1)

1 =0.37 , λ
(1)

2 =1.20, Z1 =

( −0.12 −0.99
−0.99 0.12

)
, λ

(2)

1 =0.27 , λ
(2)

2 =0.76, Z2 =

( −0.05 −0.99
−0.99 0.05

)
.

In this case the number of misclassified samples is 18. Note that the initial choice of the centers does
not influence significantly the computed centers and clusters. For instance in figure 2ii)c are represented
the resulted clusters in case of randomly selected initial centers.

The separating line d2 computed by the algorithm SV M1 applied to the data represented by these
clusters is represented in figure 2ii)d.

Test 3:

N1 = N2 =50, μ1 =

(
1
1

)
, Σ1 =

(
1 0
0 0.25

)
, μ2 =

(
3
4

)
, Σ2 =

(
0.5 0
0 0.5

)
,

λ
(1)
1 =0.25 , λ

(1)
2 =1, Z1 =

(
0 1
1 0

)
, λ

(2)
1 =0.5 , λ

(2)
2 =0.5, Z2 =

(
1 0
0 1

)
,

μ̂1 =

(
0.76
1.00

)
, Σ̂1 =

(
1.17 −0.06
−0.06 0.21

)
, μ̂2 =

(
2.87
4.03

)
, Σ̂2 =

(
0.56 0.00
0.00 0.31

)
,

λ̂
(1)
1 =0.21 , λ̂

(1)
2 =1.18, Ẑ1 =

( −0.07 −0.99
−0.99 0.07

)
, λ̂

(2)
1 =0.31 , λ̂

(2)
2 =0.56, Ẑ2 =

(
0.03 −0.99
−0.99 −0.03

)
.

The data set is linear separable and it is represented in figure 3i)a. Applying the SV M1 we obtain
the soft margin line d1 represented in 3i)b and ρ = 1.19.
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Figure 3: i) The classification of the data set in test 3; ii) The classification of the data set in test 4.

The clusters computed by the 2-means algorithm are represented in figure 3i)c and they are the same
as in initial data set whatever the initial choice of the centers is. So, the statistical characteristics are

μ1 = μ̂1, Σ1 =Σ̂1, μ2 = μ̂2, , Σ2 =Σ̂2,

λ
(1)

1 = λ̂
(1)
1 , λ

(1)

2 = λ̂
(1)
2 , Z1 = Ẑ1, λ

(2)

1 = λ̂
(2)
1 , λ

(2)

2 = λ̂
(2)
2 , Z2 = Ẑ2,

and the separating line d2 computed by the algorithm SV M1 and represented in figure 3i)d coincides
with d1.
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Test 4:

N1 = 100 , N2 =150, μ1 =

(
1
1

)
, Σ1 =

(
1 0
0 0.25

)
, μ2 =

(
3
4

)
, Σ2 =

(
0.5 0
0 0.5

)
.

λ
(1)
1 =0.25 , λ

(1)
2 =1, Z1 =

(
0 1
1 0

)
, λ

(2)
1 =0.5 , λ

(2)
2 =0.5, Z2 =

(
1 0
0 1

)
.

μ̂1 =

(
1.22
1.03

)
, Σ̂1 =

(
1.04 −0.03
−0.03 0.24

)
, μ̂2 =

(
2.98
3.99

)
, Σ̂2 =

(
0.48 −0.01
−0.01 0.43

)
.

λ̂
(1)
1 =0.24 , λ̂

(1)
2 =1.04, Ẑ1 =

( −0.04 −0.99
−0.99 0.04

)
, λ̂

(2)
1 =0.42 , λ̂

(2)
2 =0.49, Ẑ2 =

( −0.27 −0.9
−0.96 0.27

)
.

The data set is linear separable and it is represented in figure 3ii)a. Applying the SV M1 we obtain
the soft margin line d1 represented in 3ii)b and ρ = 0.55.

The clusters computed by the 2-means algorithm are represented in figure 3ii)c and their statistical
characteristics are

μ1 =

(
1.20
1.04

)
, Σ1 =

(
0.98 −0.04
−0.04 0.26

)
, μ2 =

(
3.00
3.98

)
, Σ2 =

(
0.48 −0.04
−0.04 0.45

)
,

λ
(1)

1 =0.26 , λ
(1)

2 =0.98, Z1 =

( −0.05 −0.99
−0.99 0.05

)
, λ

(2)

1 =0.42 , λ
(2)

2 =0.51, Z2 =

( −0.60 −0.79
−0.79 0.60

)
.

In this case the number of misclassified samples is 2 and the initial centers are randomly selected. The
separating line d2 computed by the algorithm SV M1 applied to the data represented by these clusters
is represented in figure 3ii)d.
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