
First International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, 22-25 October, 2009

Wasp based algorithms and applications

Dana Simian

Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present

1

A Formal Approach for OOD Metrics Definition

Camelia Şerban

Abstract

The lack of standard formalism for defining software metrics has led to ambiguity in their defini-

tions which hampers their applicability, comparison and implementation. As a result in this direction,

this paper proposes a conceptual framework for object oriented design metrics definition, based on

sets and relations theories and presents some concrete examples.

1 Introduction

Software metrics are important in many areas of software engineering, for example assessing software
quality or estimating the cost and effort of developing software. Many metrics have been proposed and
new metrics continue to appear in the literature regularly.

In spite of the existence of many metrics, problems often arise from the formality degree used to
define them. When metrics are informally expressed, using natural language, people using metrics can
interpret them in several ways. Two distinct teams can obtain completely different results when applying
a particular metric to the same system. For example, Li and Henry [1] define their metric NOM (number
of methods) as “the number of local methods” of a class. Unfortunately they do not define the term “local
method”. From the context it can be guessed that inherited methods are not counted. But what about
class methods? Redefined methods? Is the method visibility (public etc.) considered? Many questions
are left unanswered, nevertheless the authors validate their metric as a predictor for maintenance effort.

On the other extreme, when metrics are defined using some kind of formalism (e.g. OCL language),
the majority of software designers may not have the required background to understand the complex
expressions that are used.

In order to overcome the above mentioned problems, the current paper proposes a conceptual frame-
work for object oriented design (OOD) metrics definition, based on sets and relations theories. The
metrics that can be expressed using our framework have definitions that are unambiguous, simple and
language independent. They are unambiguous, as their definition relies on the accurate formalism of sets
and relations, knowledge considered known since the first stages of our studies. They are simple, as their
computation is mainly achieved using lists traversal techniques.

We discuss the proposed approach as follows. Section 2 reviews related works in the area of OOD
metrics definition. Section 3 presents our approach within the corresponding context (defined in terms
of set and relations) that defines a meta-model where the entities of interest, their properties and their
interrelationships are formally specified. As a proof of concept, Section 4 defines two OOD metrics, Cou-
pling Between Objects (CBO) and Weighted Methods per Class (WMC). Finally, Section 5 summarizes
the contributions of this work and outlines directions for further research.

 262

Camelia Serban

�

2 Related work

Several authors have attempted to address the problem of imprecise metric definitions. Briand et al.
propose two extensive frameworks for software measurement, one for measuring coupling and the other
for measuring cohesion in object-oriented systems [8, 9]. While this framework allows for the unambiguous
definition of coupling and cohesion metrics, new frameworks must be developed for other types of metrics.
Therefore their scalability is hampered.

Another approach put forward by Reiβing involved the proposal of a formal model on which to base
metric definitions [7]. This model is called ODEM (Object-oriented DEsign Model) and consists of an
abstraction layer built upon the UML meta-model. However, this model can only be used for the definition
of design metrics and does not solve the ambiguity problem as the abstraction layer consists of natural
language expressions.

Baroni et al. propose the use of the OCL and the UML meta-model as a mechanism for defining
UML-based metrics [5]. They have built a library called FLAME (Formal Library for Aiding Metrics
Extraction) [6] which is a library of metric definitions formulated as OCL expressions over the UML 1.3
meta-model. We believe that this approach provides a useful mechanism for the precise definition but the
majority of software designers may not have the required background to understand the OCL formalism.

In this paper, we start from the approach proposed by Briand et al. We extend this approach and
integrate it within a corresponding meta-model for object oriented design. The design entities, their
properties and relations are formally specify, based on sets and relations theories, knowledge considered
known since the first stages of our studies. The metrics that can be expressed using our meta-model have
definitions that are unambiguous, simple and language independent. They are unambiguous, as their
definition relies on the accurate formalism of sets and relations. They are simple, as their computation
is mainly achieved using lists traversal techniques.

3 A conceptual framework for OOD metrics definition. Formal

approach

Before embarking in any measurement activity, we need to define the domain of our measurement; this
means its constituent elements, their properties and the relationships that exist between them. These
components define a meta-model of the analyzed system [3], meta-model that provides our conceptual
framework for OOD metrics definitions.

Definition 1 (A meta-model for object-oriented design)

The 3-tuple D = (E,Prop(E), Rel(E)) is called a metamodel for object oriented design corresponding to

a software system S, where

• E represents the set of design entities;

• Prop(E) defines the properties of the elements from E;

• Rel(E) represents the relations between the design entities.

The components E,Prop(E), Rel(E) will be specified in the following, using terms of sets and rela-
tions.

3.1 Design entities

Let E = {e1, e2, ..., enoE} be the set of design entities of the software system S, where ei(1 ≤ i ≤ noE)
can be a class, a method from a class, an attribute from a class, a parameter from a method or a local

variable declared in the implementation of a method. We also consider that:

• Class(E) = {C1, C2, ..., CnoC} is a set of entities that are classes, Class (E) ⊂ E, noC =
|Class(E)|, noC-number of classes;

 263

A Formal Approach for OOD Metrics Definition

�

• each class has a set of methods and attributes, therefore (∀)i, 1 ≤ i ≤ noC:

Meth(Ci) =
{

mi1,mi2, ...,mi(noMCi
)

}
is the set of methods of class Ci, 1 ≤ noMCi

≤ noC,

noMCi
= |Meth(Ci)|, noMCi

-number of methods of class Ci;

Attr(Ci) =
{

ai1, ai2, ..., ai(noACi
)

}
is the set of attributes of class Ci, 1 ≤ noACi

≤ noC, noACi
=

|Attr(Ci)|, noMCi
-number of attributes of class Ci ;

• AllMeth(E) =
noC⋃
i=1

Meth(Ci) is a set of methods from all classes of the software system S,

AllMeth(E) ⊂ E, noM = |AllMeth(E)|, noM -the number of all methods;

• AllAttr(E) =
noC⋃
i=1

Attr(Ci) is the set of attributes from all classes of the software system S,

AllAttr(E) ⊂ E, noA = |AllAttr(E)|, noM -the number of all attributes;

• each method has a set of parameters and local variables, (∀)i, 1 ≤ i ≤ noC, (∀)j, 1 ≤ j ≤ noMCi
:

Param(mij) = {pij1, pij2, ..., pij(noPmij
)}

is the set of parameters of method mij , noPmij
= |Param(mij)|, noPmij

-the number of parameters
of method mij and

LocV ar(mij) = {lvij1, lvij2, ..., lvij(noLVmij
)}

is the set of local variables of method mij , noLVmij
= |LocV ar(mij)|, noLVmij

-the number of local
variables of method mij ;

• AllParam(E) =
noC⋃
i=1

noMCi⋃
j=1

Param(mij), Param(E) ⊂ E, noP = |AllParam(E)|, noP -the number

of all parameters;

• AllLocV ar(E) =
l⋃

i=1

noMCi⋃
j=1

LocV ar(mij), LocV ar(E) ⊂ E, noLV = |AllLocV ar(E)|, noLV -the

number of all local variables;;

Based on the above notations, the design entities set is defined as in equation 1:

E = Class(E)
⋃

AllMeth(E)
⋃

AllAttr(E)
⋃

AllParam(E)
⋃

AllLocV ar(E) (1)

3.2 Properties of design entities

As we have mentioned before, the second element of our meta-model is the set of properties of the design
entities, denoted by Prop(E). Because, in this approach we will refer to five types of design entities
(classes, methods, attributes, parameters, local variables), each type having its own set of properties, we
define a model in order to specify the properties of entities of a generic type T . Then, we apply this
model for our concrete types of design entities enumerated above.

3.2.1 Properties of generic type entities. Formal specification.

• Let us consider a set of entities A = {a1, a2, ..., ak} of a generic type T and a set of properties
defined on this type, PropT = {P1, P2, ...PnoPT

};

• Each property Pi from Prop(T), 1 ≤ i ≤ noPT , has a set of values Pi = {vi1, vi2, ...viNoVi
}.

• Each entity ai from A, 1 ≤ i ≤ k, will be assigned to a value from the cartesian product, P1 ×P2 ×
... × PnoPT

, assignment that will be fomally expressed as follows:

PropV alT : A → P1 × P2 × ... × PnoPT

 264

Camelia Serban

�

With the above mentioned notations and remarks, we will introduce the following definitions:

Definition 2 A component vi of the noPT− dimensional vector

PropV alT (aj) = (v1, v2, ..., vnoPT
)

is called the value of property Pi corresponding to entity aj. In this approach this component will be

refered as vi = aj .Pi.

Definition 3 The set PropV alT (A) = {PropV alT (aj)|(∀)i, 1 ≤ i ≤ k} is called the values of properties

corresponding to a set of entities A of type T .

Definition 4 The 4-tuple PropT,A = [T, A, PropT , P ropV alT (A)] is called properties specification cor-

responding to a set of entities A of type T .

3.2.2 Properties of design entities. Formal specification.

In the following, we apply the pattern defined in Section 3.2.1 in order to specify the properties for each
type of design entities from our meta-model: class, method, attribute, parameter, localVariable. In Table
1 we describe the abbreviations used for the five entity type mentioned above. The following definitions
will use these abbreviations.

Entity type class method attribute parameter local variable

Abbreviation C M A P LV

Table 1: Abbreviation of design entitites type

Definition 5 (Specification of properties for entities of type “class”)

The 4-tuple

PropC,Class(E) = [C,Class(E), P ropC , P ropV alC(Class(E))]

is called specification of properties for entities of type“class”, where

• PropC = {Abstraction, V isibility,Reuse}

• Abstraction = {concrete, abstract, interface},

• V isibility = {normal, inner, public(Java)},

• Reusability = {user − defined, user − extended, library}

Definition 6 (Specification of properties for entities of type “method”)

The 4-tuple

PropM,AllMethod(E) = [M, AllMethod(E), P ropM , P ropV alM (AllMethod(E))]

is called specification of properties for entities of type“method”, where

• PropM = {Abstraction, V isibility,Reuse,Kind, Instantion,Binding}

• Abstraction = {concrete, abstract},

• V isibility = {private, protected, public},

• Reuse = {defined, overrriden, inherited, library}

• Binding = {static, dynamic(virtual)}

 265

A Formal Approach for OOD Metrics Definition

�

• Kind = {constructor, destructor, normal, accesor}

• Instantiation = {class(static), object(instance)}

Definition 7 (Specification of properties for entities of type “attribute”)

The 4-tuple

PropA,AllAttrib(E) = [A,AllAttrib(E), P ropA, P ropV alA(AllAttrib(E))]

is called specification of properties for entities of type“attribute”, where

• PropA = {Type,Agregation, V isibility}

• Type = {built − in(predefined), user − defined, library},

• Agregation = {simple, array},

• V isibility = {private, protected, public},

Definition 8 (Specification of properties for entities of type “parameter”)

The 4-tuple

PropP,AllParam(E) = [P,AllParam(E), P ropP , P ropV alP (AllParam(E))]

is called specification of properties for entities of type“parameter”, where

• PropP = {Type,Agregation}

• Type = {built − in(predefined), user − defined, library},

• Agregation = {simple, array},

Definition 9 (Specification of properties for entities of type “local variable”)

The 4-tuple

PropLV,AllLocV ar(E) = [LV, AllLocV ar(E), P ropLV , P ropV alLV (AllLocV ar(E))]

is called specification of properties for entities of type“local variable”, where

• PropLV = {Type,Agregation}

• Type = {built − in(predefined), user − defined, library},

• Agregation = {simple, array},

Definition 10 (Formal specification of properties of design entities)

The 5-tuple

Prop(E) = [PropC,Class(E), P ropM,AllMethod(E), P ropP,AllParam(E),

P ropA,AllAttrib(E), P ropLV,AllLocV ar(E)]

is called formal specification of properties of design entities.

3.3 Relations between design entities

In this section we summarize the type of relations that exist between the entities from the meta-model.
We mention here that for each entity, we consider only those relations in which it directly interacts with
other entities.

 266

Camelia Serban

�

3.3.1 Inheritance relations between classes

Inheritance defines a relation among classes in which a class shares its structure and behavior with one
or more classes. Regarding the inheritance concept, there are two types of direct relations among classes:
a class is either a specialization of another class or an implementation of an interface class.

Definition 11 (Inheritance relation)

Consider a, b ∈ Class(E). There are two types of direct relations among classes:

• a extends b, if class a is a specialization of class b (class a inherits the structure and behavior

of class b);

• a implements b, if class a is an implementation of the interface class b (class a implements the

behavior of the interface class b).

Definition 12 (Inheritance relations set)

• ExtendsSet = {(a, b) ∈ Class(E)|a extends b} ⊆ Class(E)2;

• ImplementsSet = {(a, b) ∈ Class(E)|a implements b} ⊆ Class(E)2,

3.3.2 Method invocation relations

In order to define certain metrics for a class c, it is necessary to know the set of methods that are called
by any method m ∈ Meth(E) and the set of variables referenced by any method of the class c. The
definition of method call relation was defined by Briand in [8]. We have adapted it to our framework as
follows:

Definition 13 (Method call)

Let c ∈ Class(E), m1 ∈ Meth(c) such that m1.Reuse ∈ {defined, overriden}, and m2 ∈ Meth(E).
We say that m1 call m2 ⇔ ∃d ∈ Class(E) such that m2 ∈ Meth(d) and the body of m1 has a method

invocation where m2 is invoked for an object of type class d, or m2 is a class method of type class d.

Definition 14 (Methods calls set)

Let MCall(E) be the set of all methods invocations, where

MCall(E) = {(m1,m2)|m1,m2 ∈ Meth(E),m1 call m2}

3.3.3 Attributes references relations

Methods may reference attributes. It is sufficient to consider the static type of the object for which an
attribute is referenced because attribute references are not determined dynamically. For the discussion
of measures later, it must be possible to express for a method, m, the set of attributes referenced by the
method:

Definition 15 (Attribute references [8]) For each method m ∈ AllMeth(E) let AttrRef(m) be the

set of attributes referenced by method m.

4 Metrics definition

As a proof of concept regarding the proposed approach, we define two of the Chidamber and Kemerer [4]
metrics suite: Weighted Methods per Class (WMC) and Coupling Between Objects (CBO).

The WMC metric could be used in reverse engineering for detecting the central control classes in a
system, based on the assumption that these classes are more complex than the others (model capture).
Regarding the definition of this metric, we have to extend our model in order to offer a formal definition
for Cyclomatic complexity metric [2]. This extension will be one of the objectives of our future work.

The CBO metric measures some aspects of coupling in an object oriented design. Coupling is an
important criterion when evaluating a system because it captures a very desirable characteristic: a
change to one part of the system should have a minimal impact on the other parts. An excessive coupling
plays a negative role on many external quality attributes like reusability, maintainability and testability.

 267

A Formal Approach for OOD Metrics Definition

�

Metric

Name

Coupling Between Objects (CBO) [4]

Informal

definition

The number of other classes that are coupled to the current one. Two Classes

are coupled when methods declared in one Class use Methods or instance variables

defined by the otherClass.

Formal

definition

CBO(c) = |d ∈ Class(E) − {c}|∃m1 ∈ Meth(c),∃m2 ∈ Meth(d) :
(m1 call m2) or (m2 call m1) or (AttrRef(m1)∩Attr(m2) �= ∅) or (AttrRef(m1)∩
Attr(m1) �= ∅)|, c ∈ Class(E)

Comments

Table 2: CBO Metric Definition

Metric

Name

Weighted Methods per Class (WMC) [4]

Informal

definition

The sum of complexities of the Methods in the current Class. If all method com-

plexities are considered to be unique, WMC is equal to the number of Methods.

Formal

definition
WMC(c) =

noMc∑
k=1

Complexity(mk)

where mk ∈ Meth(c), noMc = |Meth(c)|, c ∈ Class(E)
Comments Complexity(mk) is the Cyclomatic complexity of method mk[2]

Table 3: WMC Metric Definition

5 Conclusions and Future Work

We have presented in this paper a new approach that address the issue of formal definition of OOD
metrics, approach that allow us to define metrics in a general, flexible and extensible way. The main
advantage of our framework is its scalability, new design entities can be added, e.g package, together with
their properties and relations. Further work can be done in the following directions:

• to extend the approach in order to define any OOD metric;

• to define a library for OOD metrics definitions.

6 Acknowledgement

This research has been supported by the Romanian CNCSIS through the PNII-IDEI research grant
ID 550/2007.

References

[1] W. Li, S. Henry, Object-oriented metrics that predict maintainability. Journal of Systems and

Software, 23(2), 111–122, 1993.

[2] T.J. McCabe, A Complexity Measure. IEEE Transactions on Software Engineering, 2(4), 308–320,
1976.

[3] R. Marinescu, Measurement and quality in object-oriented design., Ph.D. thesis in the Faculty of
Automatics and Computer Science of the Politehnica University of Timisoara, 2003.

[4] S. Chidamber and C. Kemerer, A metric suite for object- oriented design. IEEE Transactions on

Software Engineering, 20(6), 476–493, 1994.

 268

Camelia Serban

�

[5] A. Baroni, S. Braz and F. Brito e Abreu , Using OCL to formalize object-oriented design metrics
defnitions. Proceedings of ECOOP Workshop on Quantative Approaches in Object-Oriented Software

Engineering, Spain, 2003.

[6] A. Baroni, S. Braz and F. Brito e Abreu , A formal library for aiding metrics extraction. Proceedings

of ECOOP Workshop on Object-Oriented Re-Engineering, Darmstadt, Germany , 2003.

[7] R. Reiβing, Towards a model for object-oriented design measurement. Proceedings of ECOOP

Workshop on Quantative Approaches in Object-Oriented Software Engineering, 2001.

[8] L. Briand, J. Daly and J. Wust, A Unified Framework for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Softw. Engineering, 25(1), 91-121, 1999.

[9] J. Wust, L. Briand, J. Daly, A Unified Framework for Cohesion Measurement in Object-Oriented
Systems. Empirical Software Engineering: An International Journal, 3(2), 65-117, 1998.

Camelia Şerban

Babeş-Bolyai University, Department of Computer Science

Kogalniceanu 1, 400084, ClujNapoca

ROMANIA

E-mail: camelia@cs.ubbcluj.ro

 269

