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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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The maximum entropy method (MEM) has been successfully applied in many different areas for

solving under-determined systems. It favors uniform distribution and tends to make variables as equal

as possible, satisfying constraints. The problem is that for the initial adjustment of some problem for

the MEM applications variables have to be selected in such a way that the solution is feasible, but

may be far from desirable. This paper presents an improvement of the MEM model by introduction

of new variables, constraints and weight factors that shift solution from feasibility to optimality. This

modified method exploits the property of the MEM that it can smoothly move from cases where

constraints can be satisfied to cases where constraints become desirable goals that are satisfied as

much as possible. A software system was developed which includes all the mentioned features.

1 Introduction

The maximum entropy method was recently used with great success in many different areas where under-
determined systems are involved. It is most frequently used in chemistry ([1]), but also in many other
very diverse areas: computer network design ([2]), character recognition ([3]), data analysis ([4]), image
processing ([5], [6]), economy ([7]). Theoretical developments also continue ([8]).

The basic idea is to get a unique solution from the under-determined system by introducing the
additional constraint that the entropy function should be maximized. The other methods that were
used for solving under-determined systems use the same technique: they introduce additional, artificial
constraints that make the number of constraints equal to the number of unknowns. The difference is
that the maximum entropy method introduces the most natural additional constraint: one that does not
introduce any new, arbitrary and unwarranted information. It uses only the information that is given
and makes no assumptions about missing information.

Before going to the formal definition of the maximum entropy principle, it is interesting to mention
that, besides very pragmatic uses, there are very extensive and still open philosophical discussions about
the real meaning of this principle. The predecessor of the maximum entropy principle is the principle
of insufficient reason (James Bernoulli: Ars Conjectandi, 1713). It states that in the absence of any
information (knowledge), all outcomes should be considered equally possible. This principle was involved
in the discussions about prior probabilities (probabilities of one event, state of the knowledge) and relative
frequencies. Relative frequencies become predominant and some useful works from Laplace and Bayes
were criticized. Shannon’s works on information theory opened a new opportunity for revitalization of
the principle of insufficient reason, this time as a more sophisticated maximum entropy principle which
was introduced by Jaynes. Philosophical discussions about the real meaning of the maximum entropy
method are interesting, but since method was successfully applied in many areas, for any new area the
most important criterion is not how well the relation between the MEM and that area can be explained,
but how useful are the results of the application of the method.
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2 The MEM Formalism

General model of the MEM calls for random variables and probabilities, but for most problems more
suitable description is:

A system of k equations with n variables vi, k < n represents constraints. Maximum entropy solution
which respects constraints and makes variables as equal as possible is looked for. It is interesting to notice
that the same goal can be attained by using some other function that has maximum when all variables
are equal. One very simple such function is the product of all variables. The product function expression
seems simpler then the entropy function expression which involves logarithms, but the fact that partial
derivatives are needed points out that entropy function is better since it separates variables.

x1,1v1 + x1,2v2 + ... + x1,nvn = l1

x2,1v1 + x2,2v2 + ... + x2,nvn = l2 (1)

...

xk,1v1 + xk,2v2 + ... + xk,nvn = lk

Variables vi are converted to probabilities by normalization: pi = vi/
∑n

j=1 vj and mi = li/
∑n

j=1 vj .
The system (1) then becomes

n∑
i=1

xr,ipi = mr , r = 1, 2, ..., k (2)

This is equivalent to the classical definition of the MEM where it is assumed that for a discrete random
variable X the values x1, x2, ..., xn that it can take are known, but the corresponding probabilities
p1, p2, ..., pn are not known. The expected values for k < n − 1 functions of X (for example, the first
k moments) are also known and represent constraints:

E[ fr(X)] = mr r = 1, 2, ..., k. (3)

Equation (2) (or (3)) gives (together with
∑

pi = 1) k +1 < n constraints for n unknown variables
p1, p2, ..., pn. This system is under-determined and has an infinite number of solutions. The unique
solution that maximizes the entropy of the system is looked for. That is the best solution in the sense
that it uses only the information given. It is neutral to the missing information (it does not introduce
any hidden assumptions). This additional constraint can be expressed as:

Maximize the entropy function

H(p1, p2, ..., pn) = − K

n∑
i=1

pi ln(pi). (4)

For K = 1, entropy will be expressed in natural units (rather than in bits).
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2.1 Solution

The method of Lagrange multipliers is used. This will not guarantee that probabilities are non-negative.
The substitution pi = e−qi is introduced, but this gives a stronger constraint than the one required: all
probabilities are now positive definite (none of them can be zero). The problem now is to maximize

H(q1, q2, ..., qn) =

n∑
i=1

qi e−qi (5)

under the conditions

n∑
i=1

e−qi = 1 (6)

n∑
i=1

e−qifr(xi) = mr , r = 1, 2, ..., k (7)

Lagrange multipliers λ, μ1, μ2, ..., μk are introduced with the function:

F (q1, q2, ..., qn) =

n∑
i=1

qi e−qi + λ

n∑
i=1

e−qi +

k∑
r=1

μr

n∑
i=1

e−qi fr(xi) (8)

All partial derivatives should be zero:

δF

δqi

= e−qi [1 − qi − λ −
k∑

r=1

μr fr(xi)] = 0 , i = 1, 2, ..., n (9)

Since e−qi is never zero

qi = 1 − λ −

k∑
r=1

μr fr(xi) , i = 1, 2, ..., n (10)

The problem is now solved: Equations (6), (7), and (10) give n+k+1 equations for n+k+1 unknown
variables p1, p2, ..., pn, μ1, μ2, ..., μk, λ. The system should have unique solution, but it is not linear
and some numerical method has to be used.

To make the calculations easier, the partition function is introduced:

Z(μ1, μ2, ..., μk) =

n∑
i=1

pi e−λ =

n∑
i=1

e−λ−qi

Z(μ1, μ2, ..., μk) =
1

e

n∑
i=1

e
∑ k

r=1 μr fr(xi) (11)

It is easy to see that

λ = − lnZ(μ1, μ2, ..., μk) (12)

mr =
δ

δμr

lnZ(μ1, μ2, ..., μk) (13)

or

mr =

n∑
i=1

[mr − fr(xi)]e
∑ k

j=1 μj fj(xi) = 0 , r = 1, 2, ..., k (14)
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Equation (14) represents k equations for k unknown variables μ1, μ2, ..., μk. When it is solved, from
Equation (12) λ is calculated, and then from Equation (10) q1, q2, ..., qn are determined , and finally,
from pi = e−qi the probabilities p1, p2, ..., pn are calculated.

Substitution tj = eμj , j = 1, 2, ..., k can be introduced. Then Equations (12) and (14) become:

λ = 1 − ln[

n∑
i=1

Πk
j=1t

fj(xi)
j ] (15)

n∑
i=1

[mr − fr(xi)]Π
k
j=1t

fj(xi)
j = 0, r = 1, 2, ..., k (16)

There is an algorithm to solve this system. However, the function that is to be minimized is not convex
even in the simplest case when there is only one constraint: expected value. The standard Newton-Rapson
procedure will not work. But the Jacobian matrix for this system is symmetric and positive definite. This
gives a scalar potential function which is strictly convex and whose minimum is easy to find. The use of
the second order Taylor expansion is recommended. However, after much experience with the algorithm,
our impression is that it is not even worth trying to find the exact value for α that determines how far to
go along a certain direction, let alone inverting the Jacobian matrix every time. For our software system
we developed a heuristic that performs well.

2.2 Selection Principle

The previous model has constraints pi > 0, i = 1, 2, ..., n. This may be too strong since the probabilities
need only to be nonnegative. To make pi ≥ 0, pi = q2

i can be introduced instead of pi = e−qi , which
was used before. In that case, the problem becomes to maximize

H(q1, q2, ..., qn) = − 2

n∑
i=1

q2
i ln(qi) (17)

under the conditions

n∑
i=1

q2
i = 1 (18)

n∑
i=1

q2
i fr(xi) = mr, r = 1, 2, ..., k (19)

Lagrange multipliers are introduced:

F (q1, q2, ..., qn) = − 2

n∑
i=1

q2
i ln(qi) + λ

n∑
i=1

q2
i +

k∑
r=1

μr

n∑
i=1

q2
i fr(xi) (20)

Partial derivatives should be zero:

δF

δqi

= − 2qi[2ln(qi) + 1 − λ −

k∑
r=1

μrfr(xi)] = 0, i = 1, 2, ..., n (21)

Now, the selection has to be made: any qi can be zero.

qi = 0 or qi = e( −1+λ+
∑k

r=1 μr fr(xi) )
0.5

, i = 1, 2, ..., n (22)

When it is decided which qi are to be zero, the remaining equations will give as many equations as
there are unknown variables. The partition function is equal as in the previous model, and the whole
discussion repeats. The only difference is that summations are not carried for all i = 1 to n, but only for
those i for which qi �= 0.
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This new model is used only to show how the case pi=0 for some i can be included. In practice, we
have to decide which pi will be zero. We can do it in advance and consider a model that has only n−m

probabilities (if m probabilities are selected to be zero). If we select too many probabilities to be zero,
the system may become over-determined.

3 The Guided MEM

For many problems initial adjustment for the MEM application requires that variables of the system be
determined in such a way that a feasible solution is obtained. This may not be a desirable solution for
the optimization, but constraints have to be satisfied first.

It is possible to modify the MEM model and include a mechanism to guide the process of optimization.
Once the necessary constrains are satisfied, artificial variables can be introduced that will guide the
optimization process in the desirable direction.

MEM guidance will be demonstrated on an example, similar to Brandeis Dice Problem.
A die, possibly irregular, is considered. The number of spots that shows up when the die is tossed

defines a random variable with possible outcomes and corresponding probabilities.

X = [1, 2, 3, 4, 5, 6]

P(6) = [p1, p2, p3, p4, p5, p6]

The constraint that the sum of the probabilities is 1 is always present and in usual terminology not
counted as an additional constraint. Without any (additional) constraints the expected value E(X) is
3.5 and the solution for the probabilities is an uniform distribution: pi = 0.167, i = 1, 2, ...6.

For a single constraint EX=4.4 there is one (additional) constraint:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 = 4.4

and the MEM solution is:

P(6) = [0.063, 0.087, 0.121, 0.169, 0.234, 0.325]

As expected, the probabilities density is shifted towards larger outcomes since expected value shifted
in that direction.

If the elementary probabilities were not the goal of equalization but some coarser variables, additional
constraint can be included. If, for example, the goal is to to make px = p1+p2+p3 equal to py = p4+p5+p6,
a system of two constraints can be used:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 = 4.4

1p1 + 1p2 + 1p3 − 1p4 − 1p5 − 1p6 = 0

In this case it is possible to have a solution that will satisfy both constraints:

P(6) = [0.004, 0.042, 0.454, 0.004, 0.042, 0.454] (23)

The problem with this approach is that it limited to cases when the guidance goal (in this case the
total equalization of px and py) is possible. However, the main advantage of the MEM method is its
ability to push towards the guidance goal even when exact goal satisfaction is not possible.
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This can be illustrated on the previous example, but with changed requirement that E(X) = 4.6. It
is easy to see that the constraint

p1 + p2 + p3 = p4 + p5 + p6

can not be satisfied. The maximum value for E(X) is reached when probabilities density is pushed
toward higher values:

P(6) = [0, 0, 0.5, 0, 0, 0.5]

The value for E(X) is in that case equal to 4.5. For any higher value of E(X) exact equalization (which
is the second constraint) is not possible.

To make the sums p1 + p2 + p3 and p4 + p5 + p6 as equal as possible, new variables are introduced:
p6 = px = p1+p2+p3 and p7 = py = p4+p5+p6. Two new constraints that define these new probabilities
are added. The fact that new variables are mentioned as constraints will make them participate in the
equalization process.

Care mast be taken about normalization. New probabilities (p7 and p8) are not independent from
the old ones and the sum of all probabilities becomes 2. Considering that the sum of all probabilities has
to be 1 and that the sum of old probabilities (only old probabilities participate in the first constraint) is
only 0.5, the first constraint has to be redefined.

Three constraints now become:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 0p7 + 0p8 = 2.3

1p1 + 1p2 + 1p3 + 0p4 + 0p5 + 0p6 − 1p7 + 0p8 = 0

0p1 + 0p2 + 0p3 + 1p4 + 1p5 + 1p6 + 0p7 − 1p8 = 0

and the corresponding MEM solution is:

P(8) = [0.020, 0.039, 0.076, 0.055, 0.106, 0.205, 0.135, 0.365]

or, when only P(6) is denormalized:

P(6) = [0.040, 0.078, 0.152, 0.109, 0.211, 0.409]

This solution represents smooth extrapolation of the previous case. All constraints are satisfied. Ex-
pected value is 4.6. However, p7 and p8 are not equal since that was not the requirement any more. These
variables were mentioned in the system of constraints so they participate in the process of equalization,
but only to some extent. In this case (after denormalization), p7 = 0.270 and p8 = 0.730. This is far from
being equal, the ratio p8/p7 is 2.7. We can make them closer to being equal by forcing them to contribute
more significantly in the optimization process. This can be accomplished by redefining them in such a
way that the larger mass of the probability is concentrated in them. If the constraints p6 = p1 + p2 + p3

and p7 = p4 + p5 + p6 are replaced with p6 = 9p1 + 9p2 + 9p3 and p7 = 9p4 + 9p5 + 9p6 only the 10%
of the probability mass will remain in the old probabilities and 90% will be concentrated in the new
probabilities. This will make new probabilities more significant in the equalization process, but the first
constraint has to be redefined to reflect the fact that old probabilities, that define it, now contribute 10
times less. The new set of constraint is:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 0p7 + 0p8 = 0.46
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9p1 + 9p2 + 9p3 + 0p4 + 0p5 + 0p6 − 1p7 + 0p8 = 0

0p1 + 0p2 + 0p3 + 9p4 + 9p5 + 9p6 + 0p7 − 1p8 = 0

The corresponding MEM solution is:

P(8) = [0.001, 0.007, 0.031, 0.002, 0.010, 0.049, 0.348, 0.552]

or, when only P(6) is denormalized:

P(6) = [0.014, 0.066, 0.307, 0.022, 0.104, 0.487]

New probabilities p7 and p8 are now closer to being equal since ratio p8/p7 is 1.6.
We can push this process further in that direction by making old probabilities contain only 2% of the

probability mass, which is equivalent of making new probabiities 50 times more important.
The new set of constraints is now:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 0p7 + 0p8 = 0.092

49p1 + 49p2 + 49p3 + 0p4 + 0p5 + 0p6 − 1p7 + 0p8 = 0

0p1 + 0p2 + 0p3 + 49p4 + 49p5 + 49p6 + 0p7 − 1p8 = 0

The corresponding MEM solution is:

P(8) = [0.000, 0.000, 0.009, 0.000, 0.000, 0.010, 0.444, 0.536]

or, when only P(6) is denormalized:

P(6) = [0.001, 0.019, 0.434, 0.001, 0.023, 0.523]

New probabilities p7 and p8 are now even closer to being equal since ratio p8/p7 improved to 1.2.
For significance of new probabilities equal to 100, the corresponding

probabilities are P(8) = [0.000000, 0.000038, 0.004603, 0.000000, 0.000044, 0.005314, 0.459509, 0.530491],
P(6) = [0.0000, 0.0038, 0.4603, 0.0000, 0.0044, 0.5314] and ratio p8/p7 = 1.15.

The process that is described shows that it is possible to adjust MEM for some constrained optimiza-
tion problem and then guide it in the desired direction, but there is no universal way how to do it, each
problem has to be investigated separately.

4 Conclusion

The maximum entropy method can successfully be used for optimization with constraints that are rep-
resented by under-determined systems. A software system is developed that includes standard MEM
solution with some improvements which include a heuristics for speeding up the calculations. For each
particular application a problem has to be transferred into the form usable for the MEM. This often leads
to MEM solution that is only feasible. Introduction of artificial variables and appropriate coefficients al-
lows to guide optimization process in the desired direction. The system was tested on the computer
network design problem where good quality initial topology and routing were obtained. This software
system represents a tool that is universal for all MEM applications, each particular problem, however,
requires very careful adjustments and that part can not be automatized.

Acknowledgment: This paper is founded from the research Project No. 144007, Ministry of Science,
Republic of Serbia.
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