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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract

The complex systems like modern computers are designed using multiagent concepts. Agent

interactions, namely communication and synchronization, fit very well the corresponding hardware

components interactions. The agent-based approach is applied here to cover the digital logic circuits

design and verification.

In order to achieve the computer components behaviour modelling and the formally verification

of the involved agents properties, we use in this paper the SCCS as the appropriate process algebra

supporting our interest of developing an algebraic model for the computer system behaviour.

In this paper we consider the specific structure for the synchronous D flip-flop as example for mod-

ern computer elementary memory cells. We define the appropriate specification and implementation

agents for algebraic modelling of the given circuits behaviour and we formally prove the corresponding

bisimilarities between the target agents. As application, we modify the obtained model in order to

prepare an appropriate solution for algebraic modelling of a general synchronous logic circuit based

on a D flip-flops matrix arrangement.

1 Introduction

The complex systems like modern computer systems are designed using multi-agent concepts. Agent
interactions, namely communication and synchronization, fit very well the corresponding hardware com-
ponents interactions. A component-based style allows components to be specified and verified individu-
ally. Larger combinations of trusted components can then be verified more easily. In this paper we use
a correctness meaning based on the bisimilarity relation between agents.

There are two modern approaches for system verification, namely model checking and theorem proving.
In this paper we apply a theorem proving approach based on the SCCS process algebra for modelling and
verifying the appropriate agents provided by the D flip-flops bahaviour. Process algebra are well known
as mathematical tools for describing and analysing the concurrent and communication systems like the
result of interconnecting hardware components, each hardware component being modelled as an agent.
Considering the digital logic level of the computer architecture description, the agent-based approach is
applied here to cover both the digital logic circuits design and verification.

Having an algebraic-based model for a multi-agent system has the main advantage of ensuring the
reliability and correctness of the core processes of the computer operation following the accurate results
provided by a formal methods based verification approach.

The present results follow the contributions of the author already obtained in [4], [6], [7] for modelling
the behaviour of different hardware components involved in a modern computer system architecture.

The final outcomes of this paper consist in defining the specification and implementation agents
for modelling the synchronous D flip-flop behaviour, proving the bisimulation equivalence between the
corresponding agents and preparing the appropriate agents for later modelling the behaviour of a complex
memory component based on a matrix organization of D flip-flops.
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2 Preliminaries

2.1 Flip-flops. Computer memory organization

Modern computer systems are based on digital components dealing with binary variables and with op-
erations that assume a logical meaning. From the structural point of view, the manipulation of binary
information is done by logic circuits, combinational or sequential. For a combinational circuit or CLC the
outputs at any given time are entirely dependent on the inputs that are present at that time. Although
every digital system is likely to have a combinational circuit, most systems encountered in practice also
include storage, memory elements, which require that the system has to be described in terms of sequential

logic circuits or SLC.

A flip-flop is a sequential circuit, a binary cell capable of storing one bit of information. It has two
outputs, one for the normal value and one for the complement value of the bit stored in it. A flip-flop
maintains a binary state until it is directed by a clock pulse to change that state. At the different levels
of detailing, the theoretical flip-flop might be asynchronous, but the synchronous models are widely used
in practice. The difference among various types of flip-flops is the number of inputs and the manner
in which the inputs, both data inputs and the clock signal, affect the binary state. Depending on the
number of data inputs, the most common types of flip-flops are: SR flip-flop, D flip-flop, JK flip-flop
and T flip-flop [3]. In this paper we will consider the case of the synchronous D flip-flop structurally
based on the synchronous SR flip-flop model.

Basically, a flip-flop is a one-bit memory. In order to store more data, we need to build a larger
memory by linking several one-bit memories to form a cell, and then join many cells together such that
one cell is on top of another and so on. In order to assure a straightforward modelling process for such
a complex memory component, we prepare in this paper the detailed agents for modelling the behaviour
of a specific SLC made up by an appropriate matrix of D flip-flops.

2.2 Process algebra SCCS

The process algebra SCCS, namely Synchronous Calculus of Communicating Systems is derived from CCS
[1], [2] especially for achieving the synchronous interaction in the framework of modelling the concurrent
communicating processes. In SCCS processes are built from a set of atomic actions A. Denoting the set
of labels for these actions by Λ, an SCCS action is either (1) a name or an input on a ∈ Λ denoted by
a, (2) a coname or an output on a ∈ Λ denoted by a or (3) an internal on a ∈ Λ denoted by the action
1, identified with the empty product. In SCCS the names together with the conames are called the
particulate actions, while an action α ∈ Λ∗ can be expressed uniquely (up to order) as a finite product
az1
1 az2

2 ... (with zi �= 0) of powers of names. Note the usual convention that a−n = an.

An SCCS process P is defined with the syntax:
P ::= nil termination

| α:P prefixing
| P+P external choice
| P × P product, synchronous composition
| P � E restriction, L ⊆ A ∪ A and E = (A-L)*

| P[f ] relabelling with the morphism f : A ∪ A → A ∪ A

In the restriction definition E = (A-L)* is the submonoid of A generated by the set difference A-L.
By definition, the P � E agent is forced to execute only the actions from the set E as the external actions.

The operational semantics for SCCS is given via inference rules that define the transition available
to SCSS processes. Combining the product and the restriction, SCCS calculus defines the synchronous
interaction as a multi-way synchronization among processes.

A formal approach such as the process algebra SCCS supports a way to relate two different speci-
fications in order to show that those specifications actually describe equivalent concurrent systems, for
some specific meaning of equivalence. In this section we use a concrete relation between two different
specifications – a notion of refinement:

Impl refines Spec
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where a low-level specification, namely Impl, refines a higher-level specification, namely Spec. For each of
the next circuits, we construct both of these specifications as follows. The specification Spec is based on
the definition of the circuit, while the specification Impl is based on the behaviour of that given circuit.
As demonstration technique, we start with the specifications Spec and Impl and then we apply a set of
SCCS-based algebraic laws in order to formally prove that the low-level specification, Impl, is correct with
respect to the higher-level one, Spec. This correctness proof is based on the bisimulation congruence, the
appropriate equivalence in the theory of concurrent communicating processes. Implicitly, this result of
bisimilarity shows that the behaviour follows the definition of the given system and, on the other hand,
it is a guarantee of using that model in other complex circuits.

3 Algebraic model for the synchronous D flip-flop behaviour

In this section we firstly define both specification and implementation agents for asynchronous SR flip-
flops, synchronous SR flip-flops and synchronous D flip-flops, respectively. In the second part of this
section we formally prove the corresponding agents bisimilarities.

It is helpfully for the next sections to define some generic agents, as follows.

NODE = in out : NODE

NODE1 =
∑

i∈{0,1}

(iniouti : NODE1)

NODE2 =
∑

i∈{0,1}

(iniupidowni : NODE2) (1)

NOT =
∑

i∈{0,1}

(inioutj : NOT), where j = NOT i

AND rec =
∑

i,j∈{0,1}

(andin1i andin2j andoutk : AND rec), where k = i AND j.

3.1 Algebraic model for the SR flip-flop behaviour

The logic diagram of an SR flip-flop consists in two NOR gates composed like in Figure 1. For the next
algebraic models we will recognize the circuit lines as follows: σ for the input value S, ρ for the input
value R, δ for the output value Q and γ for the complemented output value Q′ = NOT Q.

Figure 1: Asynchronous SR flip-flop Figure 2: Synchronous SR flip-flop

The current value of a variable like σS shows that the circuit line σ is carrying the logic value S. If
the current values on the outputs γ and δ are m and n, respectively, then the specification Spec for the
SR flip-flop behaviour might be [1]

SpecSR(m,n) =
∑

i,j∈{0,1}

(σiρjγmδn : SpecSR(k, l)) (2)

where the values k and l are defined by k = i NOR n and l = j NOR m.
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In order to achieve the composition and to assure the fork of the output signal, we have to define two
morphisms to make two appropriately relabelled copies of the NOR gate. These two morphisms are: Φ
defined by the relabelling pairs αi �→ σi and γi �→ γiαi, for i ∈ {0, 1} and respectively Ψ defined by the
relabelling pairs βi �→ ρi and γi �→ βiδi, for i ∈ {0, 1}.

We also define the set E of external actions, E = {σi, ρi, γi, δi|i ∈ {0, 1}}, in order to form the SCCS
product between the two communicating NOR gate-agents via the lines (αi, αi) and (βi, βi). We usually
abbreviate the subsets like {α0, α1} by α.

Hence, the SCCS low-level specification (or implementation) for the SR flip-flop behaviour might be

ImpSR(m,n) = (NOR(m)[Φ] x NOR(n)[Ψ]) � E (3)

This example shows how appropriate combinations of morphism, product and restriction may be used
to model the channelling of data, here along the hardware wires.

Based on ideas from [1], it is also shown in [5] that the two previous specifications for the SR flip-flop
behaviour are bisimulation equivalent (or bisimilar). So, the relation:

SpecSR(m,n) ∼ ImpSR(m,n) (4)

is established.
From the structural point of view, in order to obtain the synchronous SR flip-flop we consider the

asynchronous circuit and we add an extra level of AND gates for involving the clock signal. The syn-
chronous SR flip-flop is represented in Figure 2. We consider new indexed variables, namely CLK, for
representing the clock input signal following the index values c ∈ {0, 1}.

We define two levels for specifying the synchronous SR flip-flop behaviour, a specification and an
implementation, given by the agents, respectively:

SpecSRs(m,n, c) = (SpecInput(c) × SpecSR(m,n)) � E SRmn(c) (5)

and

ImpSRs(m,n, c) = (ImpInput(c) × ImpSR(m,n)) � E SRmn(c) (6)

where the set of external actions is E SRmn(c) = {CLKc, σ, ρ, γ, δ} for a specific value of c ∈ {0, 1}.
Note that the parameters m and n have complemented values, by definition of the flip-flop.

It is important for the next results of this paper that we have just prove in [8] that these two agents
are bisimulation equivalent based on the relation

SpecSRs(m,n, c) ∼ ImpSRs(m,n, c) (7)

3.2 Algebraic model for the synchronous D flip-flop behaviour

A D flip-flop is derived from an SR flip-flop by replacing the R input with an inverted version of the
S input, which thereby becomes D like in Figure 3. For the synchronous D flip-flop it is essential that
when the clock is reset the circuit does not operate, meaning it does not change the state, and when the
clock is set the D flip-flop loads the D input.

Figure 3: Synchronous D flip-flop
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In this section we propose the SCCS algebraic models for both the specification and the implementa-
tion of the synchronous D flip-flop behaviour and we conclude by proving the bisimilarity of these two
models.

Based on the previous definition of the synchronous D flip-flop, we consider its internal structure
consisting of an entrance level of gates and an internal synchronous SR flip-flop. We define the agent
SpecInD for specifying the behaviour of the entrance level of the D flip-flop as follows.

SpecInD =
∑

D∈{0,1}

(ζDσSρR : SpecInD) (8)

where S = D and R = NOT D.
The appropriate specification agent for the synchronous D flip-flop behaviour is given by the relation

SpecDs(m,n, c) = (SpecInD × SpecSRs(m,n, c)) � E Dmn(c) (9)

where the set of external actions is E Dmn(c) = {CLKc, ζ, γ, δ} for each value of c ∈ {0, 1}.
Let the agent ImpInD be the implementation agent for the entrance level of the D flip-flop. As

expected, this lower-level specification is based on the operation of the intercommunicating logic gates
combination. Using the generic agents already defined in (1), we have

NODE2 D = NODE2[ini �→ ζD, upi �→ σS ] for each D = i and S = i

NOT R = NOT[ini �→ downi, outj �→ ρR] for each R = j and j = NOT i.

We define the ImpInD agent as follows

ImpInD = (NODE2 D × NOT R) � E ImpInD (10)

where the set of external actions is E ImpInD = {ζ, σ, ρ}.
The appropriate implementation agent for the synchronous D flip-flop behaviour is given by the

relation
ImpDs(m,n, c) = (ImpInD × ImpSRs(m,n, c)) � E Dmn(c) (11)

where the set E Dmn(c) of external actions is the same as in the specification case.

Proposition 1 The previous agents SpecDs(m,n, c) and ImpDs(m,n, c) for (m,n) ∈ {(0, 1), (1, 0)} and

c ∈ {0, 1} are bisimulation equivalent.

Proof: The bisimulation relation ’∼’ is a congruence over the class P of agents [1], [2]. Besides, it is
already established in the previous relation (7) that SpecSRs(m,n) ∼ ImpSRs(m,n). Comparing the
definitions (9) and (11) for the target agents SpecDs(m,n, c) and ImpDs(m,n, c) respectively, it follows
that we only need to prove that:

SpecInD ∼ ImpInD

We first evaluate the lower-level specification ImpInD:

ImpInD = (NODE2 D × NOT R) � E ImpInD =

= (NODE2[ini �→ ζD, upi �→ σS ] × NOT R[ini �→ downi, outj �→ ρR]) �
� {ζ, σ, ρ} =

= (
∑

i∈{0,1}

(ζDσSdowni : NODE2 D) ×
∑

i∈{0,1}

(downiρR : NOT R)) �

� {ζ, σ, ρ}

The parameter values are: D = i, S = i, R = j and j = NOT i.
We apply the specific SCCS operational laws and the result is

ImpInD =
∑

D∈{0,1}

(ζDσSρR : (NODE2 D × NOT R) � E ImpInD)) =

=
∑

D∈{0,1}

(ζDσSρR : ImpInD) (12)
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with S = D and R = NOT D.
Comparing the definition (8) of the agent SpecInD with the previously proved relation (12) for the agent
ImpInD, it follows that both these agents are solutions for the same equation X =

∑
D∈{0,1}(ζDσSρR : X)

up to a permutation of actions in the multi-particulate prefix action. Because here the variable X is
guarded, the equation has a unique solution up to bisimilarity [2], so that the agents SpecInD and
ImpInD are bisimilar, as required. 	


We have just proved that
SpecDs(m,n, c) ∼ ImpDs(m,n, c) (13)

3.3 Specific synchronous D flip-flop models for SLC integration

In order to model the sequential circuits we have to apply two modifications to both the specification and
the implementation of the synchronous D flip-flop agents as follows. The first modification consists in
making obvious the initial state of the D flip-flop and defining separate agents for the D flip-flop operation
with each of the input value D ∈ {0, 1}. The final agents of this step are modelling the synchronous D

flip-flop operation starting from a specific initial state, with specific value on the D input and a certain
clock signal. The second modification consists in unifying the previous agents by selecting the D flip-flop
operation for a specific input value D ∈ {0, 1}, but for all the initial state combinations and all the clock
signal combinations.

As the first modification we define the next agents for making obvious the initial state Qn of the
flip-flop and for selecting the D flip-flop operation for a specific Input value D ∈ {0, 1}:

InDisI(D,n) = QnζDζD : InDisI

where D,n ∈ {0, 1}.
The appropriate specification agents are:

SpecDs isI(m,n, c,D) = (InDisI(D,n) × SpecDs(m,n, c)) � E DsisI(c,D) (14)

where the set of external actions is E DsisI(c,D) = {Q, γ, δ, CLKc, ζD} and the parameters are (m,n) ∈
{(0, 1), (1, 0)}, c ∈ {0, 1} and D ∈ {0, 1}.

The appropriate implementation agents are:

ImpDs isI(m,n, c,D) = (InDisI(D,n) × ImpDs(m,n, c)) � E DsisI(c,D) (15)

with the same set of external actions as in the specification case.

Proposition 2 For all (m,n) ∈ {(0, 1), (1, 0)}, c ∈ {0, 1} and D ∈ {0, 1} the previous agents

SpecDs isI(m,n, c,D) and ImpDs isI(m,n, c,D) are bisimulation equivalent.

Proof: The result is obvious considering that the bisimulation relation ’∼’ is a congruence over the class
P of agents [1], [2] and it is already established in the previous relation (13) that SpecDs(m,n, c) ∼
ImpDs(m,n, c). 	


As the second modification we define the appropriate agents for unifying the previous agents by
selecting the D flip-flop operation for a specific input value D ∈ {0, 1}, but for all the initial state
combinations and all the clock signal combinations. The specification agents are:

SpecCBBDisI(D) = (
∑

(m,n)∈{(0,1),(1,0)}
c∈{0,1}

SpecDs isI(m,n, c,D))[δn �→ Q∗n, γm �→ 1] (16)

for each value D ∈ {0, 1} and the implementation agents are:

ImpCBBDisI(D) = (
∑

(m,n)∈{(0,1),(1,0)}
c∈{0,1}

ImpDs isI(m,n, c,D))[δn �→ Q∗n, γm �→ 1] (17)

for each value D ∈ {0, 1}.
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Proposition 3 The previous agents SpecCBBDisI(D) and ImpCBBDisI(D) for D ∈ {0, 1} are bisimu-

lation equivalent.

Proof: The result is obvious considering that the bisimulation relation ’∼’ is a congruence over the class
P of agents [1], [2] and it is already established in the previous Proposition 2 that SpecDs isI(m,n, c,D)
∼ ImpDs isI(m,n, c,D) for all (m,n) ∈ {(0, 1), (1, 0)}, c ∈ {0, 1} and D ∈ {0, 1}. 	


It follows to use these results for modelling varied examples of sequential logic circuits behaviour,
especially those involving the D flip-flops.

4 Conclusions

Based on ideas from [1], [5], in this paper we have considered the internal structure of specific memory cells,
namely SR flip-flop and D flip-flop. For both the asynchronous and synchronous circuit organization, we
have defined specific agents for modelling the concrete flip-flops behaviour.

The authors’ scientific contributions in this paper refer mainly two directions. Firstly, we have defined
appropriate SCCS agents at two different specification levels for all of the agents involved in the hardware
components structure we were interested in. Secondly, we have proved all the corresponding agents
bisimilarities.

An immediate extension of this paper will consist in assembling all these results in order to have an
appropriate model for a computer memory component. Another direction for this work progress will be
the use of these final agents into a more complex digital logic circuit like a standard read/write memory
hardware component with an input/output controller unit integrated. For the interest of modelling the
behaviour of such a complex memory component, we have prepared here the detailed involved agents, as
application of this paper theoretical results concerning the internal D flip-flops bahaviour models.

After the modelling achievements from [4], [6], [7], these modelling attempts represent a further step
in the direction of having a global algebraic model of the entire computer system behaviour. Both the
properties of the SCCS calculus and the computer organization are supporting our interest of developing
a scalable, open algebraic models hierarchy for hardware components.
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