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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract 

In this paper, we present an extension of the concept of random database, in which the records are 
random vectors following a certain multidimensional probability distribution, to heterogeneous random 
databases, in which columns can have their own unidimensional distribution. We investigate the sizes 
of some relational operations results in these databases, focusing on difference, join and outer join. In 
this approach to random databases, we will show that the number of tuples in the results set is Poisson 
distributed in the cases of heterogeneous random tables with normal and exponential columns, or 
discrete and exponential columns, but this behavior depends on the choice of the approximation 
considered in the relational operations.  

1 Introduction 
Nowadays, every research, medical, economic or industrial field needs to store and manage 

large amounts of data. In many cases, these data are likely to be uncertain or to contain errors, but 
the problem is still to provide a good management and to be able to extract the needed 
information or to appropriately support the decision making, all based on such uncertain data. 
This is where the concept of random database has become important.  

Our work mainly focuses on the behaviour of relational operations in random databases. As 
known so far, this type of database supposed a vision of the table as a set of random vectors, 
following a common multivariate distribution. In order to distinguish this concept from the one 
we propose, we name it homogenous random database. In this framework, previous research has 
been already done. We are interested in a generalization of this concept of random database and in 
studying the behaviour of relational operations in this context. The extended concept is that of 
heterogeneous random database, in which different columns of the tables can have different 
probability distributions.  

Applying a “traditional” relational operator when working with databases that contain 
uncertain data will often result in an irrelevant, even empty, data set. Because of uncertainty, one 
should work with approximate rather than exact operations.  

In our approach, we obtained samples of some specific unidimensional distributions, stored 
them in columns of relational tables and applied approximate relational operators on these random 
tables. As in the homogeneous case, we want to obtain an estimation of the distribution of the 
number of lines in the result set of an approximate relational operation. The technique used to 
confirm the likeliness of a probability distribution is based on the chi square goodness of fit test. 
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The paper is organized as follows: in the second part, we introduce the main database and 
random database concepts and results related to the homogeneous case; in the third part, we 
describe our extension and approach to this field; we will conclude with some considerations and 
perspectives of our future work in the fourth part of this paper. 

2 Preliminaries  
In order to introduce the definitions of some fundamental database notions, we will consider 

the finite domains D1, D2, ..., Dn, not necessarily disjoint ([6]).  

Definition 1 The cartesian product D1  D2  ...  Dn of the domains D1, D2, ..., Dn is defined by 
the set of the tuples (V1, V2, ..., Vn), where V1  D1, V2  D2, ..., Vn  Dn. The number n defines the 
tuple’s arrity.  

Definition 2 A subset of the cartesian product D1  D2  ...  Dn defines a relation R on the sets 
D1, D2, ..., Dn. Consequently, a relation is a tuple set.  

There is an alternative definition of a relation, in the terms of a set of functions. Suppose that 
we associate to each domain Di an attribute Ai. 

Definition 3 A relation R is a set {f1, f2, ..., fm}, where fi : {A1, A2, ..., An}  D1  D2  ...  Dn 
and fi(Aj)  Dj for each values of i and j.  

We can easily remark that both definitions of a relation refer to sets which are varying over 
time. In these sets, elements can be inserted, deleted or updated. Obviously, not the content of this 
set characterizes a relation, but a time-invariant element. Such an element is the relational 
schema, which is actually the relation’s structure.  

Definition 4 The relational schema of a relation R is defined by the set of the attributes’ names 
which correspond to the relation R. We denote the relational schema by R(A1, A2, ..., An). 

The representation of a relation can be done by a table in which each line corresponds to a 
tuple and each column corresponds to an attribute. In other words, a column corresponds to a 
domain. The relational databases are perceived by the users as a set of tables. 

Definition 5 The degree of a relation is represented by the number of its attributes. The 
cardinality of a relation is given by the number of its tuples. 

Generally, a table is a representation of a relation, but it is important to mention that there is 
an important difference between these notions: a table is a sequence of records, contrary to a 
relation, which is a set of records. This means that the tuples of a relation must be distinct, 
whereas those of a table can be not.  

2.1 Relational operations 
The relational operations are performed by the operators of the relational model, which 

includes the relational algebra. The operators of the relational algebra are either the usual set 
operators (union, intersect, product, difference) or some specific relational operators (project, 
select, join, division). The usual set operators, except product, require that the operands had the 
same type. 

The relations in the database are subjected to operations. The result of a relational operation 
is a new relation. 

Definition 6 The intersection of two relations R and S is the relation composed by the set of the 
tuples which belong both to R and S.  

Definition 7 The difference between two relations R and S is the relation composed by the set of 
the tuples which belong to R but do not belong to S.  
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The join operator allows the information retrieval from more correlated relations. The 
required condition in order to apply the join operator is that the tuples are similar. 

Definition 8 The join between two relations R and S is a binary operation whose result is a new 
relation in which each tuple is a combination of a tuple in the first relation and a tuple in the 
second one, satisfying a given join condition.  

The join operator composes projection, selection and cartesian product. Generally, the 
cartesian product is built, some tuples are eliminated by selection and some attributes are 
eliminated by projection. When dealing with large tables, the cartesian product is a costly 
operation and consequently, so is the join. In some cases, when evaluating a join operation, even 
if the volume of the intermediate cartesian product is significant, the result of the join is quite 
small. Therefore, when joining more than two tables, it is relevant to know the sizes of the joins, 
in order to perform these operations in the proper order. This is the reason why the work related to 
the estimation of the number of lines in the result set of each operation is important, in the context 
of database optimization, when joining multiple tables or query’s result sets. 

There are several types of the join operation, such as the equi-join and the outer join. The 
equi-join requires that the values of the specified attributes are equal.  

From definition 8, it results that a join operation will lose a tuple which belongs to a relation 
if there is no tuple in the other relation such that the join condition be satisfied. In order to keep 
such tuples in the result set, we use the outer join operation. This one combines the tuples in the 
two relations for which the correlation conditions are satisfied, without losing the other tuples. 
This operator assigns null values to the attributes that exist in a tuple of one of the input relations, 
but does not exist in the second relation. There are three types of outer join operators: left, right 
and full. They keep in the result each tuple of the relation in the left, right, respectively in both 
relations. 

2.2 Approximate relational operations in random databases 
In random databases, the operations above find a homologous in the approximate operations. 

As stated in the introduction, one would get an irrelevant result if using the exact match in the 
cases when uncertainty arises.  

In this section, we will describe what some of the relational operations mentioned above 
become in the context of approximation in the random databases. In order to define the 
approximate version of these operations, we consider a distance d(x, y) between the elements in 
the domains DA and DB, which are the projections on the attributes in A and B of the domains  

and 
2

and which are assumed to be subsets of a metric space where the distance d is defined 
([7]). An example of such a distance is the Hamming distance, given by the number of different 
join attributes in the two tuples. We denote by 

1UD

UD

 B x  the ball with the centre in x having the 
radius ε.  

We define the following ε-operations: ε-difference, ε-equi-join and ε-outer-join. For two 
relations R and S, we denote these approximate operations by differenceε(R, S), joinε(R, S) and 
outer-joinε(R, S), respectively. 

Definition 9 The ε-difference between two relations R and S is a relation containing the following 
set of tuples: 

 differenceε(R, S) ={ | , ( )}x R y S x B y     (1) 

Definition 10 The ε-join between two relations R and S is a relation containing the following set 
of tuples: 

 joinε(R, S) ={( , ) | ( , ) }A Bx y R S d x y     (2) 
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Definition 11 The ε-outer-join between two relations R and S is a relation containing the 
following set of tuples: 

 outer-joinε(R, S) = joinε(R, S) {( , ) | , ( )}x y R S y S x B y       (3) 

The number of lines in the result set of each of these operations is denoted by 
, , respectively  ([8]). In the cases 

when it is clear what these values refer, we denote them by 
( (N difference R S  , )) ( ( ,N join R S  )) ))( - ( ,N outer join R S 

N  for simplicity. 
The approximative match problems have been already studied for the equi-join operation, in 

the case of the homogeneous random databases.  

Definition 12 Two tuples Ax D  and By D  are ε-close, with ε ≥ 0, if d(x, y) ≤ ε.  

As one can remark, the ε-equi-join operation’s result set contains the ε-close tuples according 
to the given distance. For the particular case ε = 0, we get the usual equi-join operation. 

2.3 Previous work 

The definition of the number N  of lines in the join’s result has one other significant 
importance, concerning the constraints in the database, as shown in the previous research on the 
random databases ([7]). The keys and functional dependencies represent the constraints in a 
database. The concept of key generalizes to that of functional dependency, which specifies 
relations between two distinct sets of attributes, meaning that the values of the first set determine 
the values of the second set of attributes. The cardinality of the set of constraints is extremely 
important in the database design. A model in which this cardinality is exponential depending on 
the number of attributes becomes impossible to manage ([2]). 

Definition 13 A minimal set of attributes whose values uniquely identify a tuple in a relation 
represents a key for that relation. 

Consequently, a key of a relation R is a set of attributes K, such that ([6]): 
i) for each tuples t1, t2 of R, we have t1(K)  t2(K); 
ii) there is no proper subset of K having the property i). 
Extending the notion of key to the one of ε-key, a set of attributes K is an ε-key if there are 

no ε-close tuples ti(K), i = 1,…,m. Such a property is denoted by R ╞ε K. For the particular case ε 
= 0, one gets the usual definition of a key. 

The set of all attributes of a relation composes a key, but the keys are better as their attributes 
set is smaller. We have that  is the number of ε-close tuples in R, for a specified 
attributes join set A. The distribution of  defines the capacity of the set A to 
distinguish the tuples in the relation R. Thus, the attributes set A is an ε-key if and only if 

= m. 

( ( ,N join R R 

N

))
))

))

( ( ,join R R 

( ( ,N join R R 

Initially, the problem of characterization of the most relevant properties of the constraints has 
been addressed in the worst case ([1]). Then, the problem has been studied in the average case for 
a general class of probabilistic models ([7]). In this second approach, the entropy of the records 
distribution was used in order to explain the properties of the constraints. 

A recent research direction concerning the random databases uses, as main tools, the Poisson 
approximation and the Rényi ε-entropy. This type of entropy is introduced as a generalization of 
the Rényi entropy for the discrete distributions. 

In the stochastic models which were considered in the random databases modeling so far, it is 
assumed that, in a random table T, the tuples are random vectors with n elements, independent and 
identically distributed, with a common probability distribution P.  

In the previous research, three types of random databases were considered ([8]): uniform, if P 
is a uniform multivariate distribution; normal, if P is a multivariate normal distribution; Bernoulli, 
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if the attributes Ai are independent and identically distributed, with a common univariate discrete 
distribution. Two particular cases of the latter database type are the standard Bernoulli database, 
where the attributes are uniformly distributed, and the conventional Bernoulli databases, where 
the domains of the attributes have the property | | 2iD  . 

3 Cardinality of ε-operations result sets in heterogeneous 
random databases 

The technique used to estimate the distribution of the N  values is the chi square test of 
goodness of fit ([5]). Before that, we generated the histograms for the frequency of the number of 
lines in the results set. These histograms indicate the possibility that the N  values are Poisson 
distributed. 

Our approach considered both cases: homogenous random tables, denoting the concept 
existing so far, and heterogeneous random tables, which represent an extension we propose. We 
recall that a heterogeneous random table is a table in which different columns can have different 
unidimensional distributions. 

3.1 Cardinality of ε-operations on heterogeneous tables 
For the heterogeneous case, we considered random tables in which we used either samples of 

two continuous distributions, namely the normal N(0, 1) and exponential Exp(1), or samples of a 
discrete and a continuous distribution, namely Binomial(200, 0.5) or Geometric(0.5) and 
exponential Exp(1).  

We considered two random relations R(A1, A2) and S(B1, B2), with at most two attributes each, 
differently distributed and containing 1000 lines. In Table 1 we show the types of relations we 
worked with.  

We made the implementations of these tables and performed the queries representing the 
relational operations in the Oracle 11g DBMS. Afterwards, we realized the histograms concerning 
the cardinality of the ε-operations.  
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Figure 1. Histogram for the 0.05-join operation between two sets of columns, each with a 
Binomial(200, 0.5) column and an Exp(1) one. 

 
As an example, Figure 1 shows the histogram for the ε-join in the heterogeneous case, for a 

Binomial(200, 0.5) column and an Exp(1) one, with ε = 0.05. In Figure 2, we have the histogram 
for the similar distributions, but ε = 0.01. 
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A1 A2 B1 B2 
Bin(200, 0.5) 

or Geom(0.5) 
- Bin(200, 0.5)

or Geom(0.5) 
 

Exp(1) N(0, 1) Exp(1) N(0, 1) 
Bin(200, 0.5) 

or Geom(0.5) 
Exp(1) Bin(200, 0.5)

or Geom(0.5) 
Exp(1) 

 
Table 1 The distribution of the columns in the random tables. 
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Figure 2. Histogram for the 0.01-join operation between two sets of columns, each with a 
Binomial(200, 0.5) column and an Exp(1) one. 

 
From these histograms, one could observe that it is possible that the random variable N  

follow a Poisson process on the line. This result has been already stated for homogeneous random 
databases in [8]. In our homogeneous cases we considered, we observed that the property that the 
number of lines in the ε-join operation has a Poisson distribution depends on the value of ε. This 
means there is a threshold up to which this distribution is followed.  

3.2 The Chi square test of goodness of fit for the distribution of the result of 
the heterogeneous ε-operations 

Consider N experiments, where N is the number of points on the line for which 

( ) ,
!

n

P N n e
n

    0  . The parameter λ of the corresponding Poisson distribution, also 

called the intensity of the Poisson process, is E(N). The parameter λ is constant, which determines 
that the Poisson process is homogenous. 

In order to estimate the parameter λ, we consider a sample 1,... N   of the homogenous 
uniform Poisson process, for a given ε, and we take the following estimation of the Poisson 
parameter: 

 
1

1ˆ
N

N
iN i 


   (4) 

The chi square test of goodness of fit is the technique used in order to show that the values of 
the random variable N  can be estimated by a homogenous uniform Poisson process.  
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In this respect, we take k the number of distinct values 1,..., k   in the sample of N  and 

1,..., kf f  the frequencies corresponding to each value. Obviously, we have that 1 ... kf f N   . 
We compute the following theoretic probabilities: 

 
ˆˆ

( )
!

j

NN
j j

j

p P N e








     (5) 

Based on the above values, we can we determine the following statistics:  

 
2

2

1

( )k
j

c
j j

jf N p

N p




 


  (6) 

Because the parameter λN has been estimated before, it implies that this statistics has the 
distribution 2  with k – 2 degrees of freedom.  

The last step of this test is to determine if there is a level of significance 0.05   such that 
2 2

1,( )c kP     . In the case when the inequality 2 2
1,c k     is true, we can state that the 

values i  do not differ significantly from a Poisson distribution. Otherwise, the possibility that 
the values i  follow a Poisson distribution is rejected. 

4 Conclusions and perspectives 

We showed that it is possible to extend the concept of random tables to more general cases, 
in which one table can host columns of different probability or mass distributions. For the two 
heterogeneous random table cases above, with a binomial and an exponentially distributed 
column, we considered the values 0.05, 0.005 and 0.001 for ε. In this case, we remarked that the 
chi square test of goodness of fit does not pass for larger values of ε (e.g. 0.05), but it passes 
successfully for smaller values (e.g. 0.01 or 0.005). The same remarks are available for the case 
when the binomial distribution was replaced by a geometric one. 

We also performed the test in the case of the homogeneous random tables with normal 
distribution or exponential distribution. Here, the chi square test of goodness of fit does not pass 
for a larger value of ε (e.g. 10-3); for ε = 10-4 the test fails, but very closely, and for smaller values 
of ε (e.g. 10-5), the test passes, so we can state that the cardinality is Poisson distributed. 

These conclusions remain true in the case of the difference or outer-join operations. 
Concerning the perspectives of our work, one direction would be to determine accurately the 

threshold up to which the ε-operations cardinalities remain Poisson distributed. Another direction 
is to find the dependency between the value of ε, the sample size and the acceptance of the 
Poisson distribution. We also intend to extend the meaning of heterogeneous databases to the case 
in which some combinations of attributes can follow multidimensional distributions. 
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