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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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  The aim of this paper is to approximate the strain energy of deformation and to determine the 

work of a charge P acting oblique on an elastic slender prismatic bar, by using the method of bar 

discretization. The discrete distribution of the deformation state is described by means of recurrence 

formulas. Also, in the case of a curved bar (cross-section is a curvilinear trapezium), a dependence 

on the principal curvatures of the middle surface of the bar is put in evidence.  

The study is made for a bar viewed as a simple uniform and isotropic material body ([12]), assumed 

as a trivial manifold without boundary endowed with a single coordinate chart.  

Finally, a numerical example for a bar with known physical and geometrical characteristics is given. 

 
       Keywords: strain energy, intrinsic representation, deflection map and angle of deflection, 
principal curvatures.   

 

1. Introduction.  
      Consider an elastic slender bar of length  L  with a fixed endpoint  A  and a free endpoint B  

loaded with a force  P ; AB denotes its initial centroidal axis, as a vertical straight line segment. 

       Usually the physical properties of the bar by the elasticity modulus  E  and by the inertial moment 

I  are given, and the geometrical ones by dimensions, by the cross-section shape, and by the centroidal 

axis aspect (especially by the curvature  1/R) are described.  The magnitude of deformation at each 

point of the bar also depends on the charge value  P  as well on the direction of the force action, that is 

of the load vector  P, ( P�P ).  

       Especially two directions of the load vector action are of interest for the technicians: 

I. The action of   P   is vertically, 
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II. The action of  P  is oblique, but its direction is passing through a fixed point of the plane  

of deformation. 

      Because the first case was treated in our paper [6], in this paper will be approached only the case II.  

      In the first case the bar is subjected (at time t = 0) to an axial compression which will be    constant 

in time (t  > 0). In the second one the compression is not axial. 

      Many studies about the elastic bar deflections by a long sequence of authors were made (see [1], 

[2], [3], [4], etc.). They analyzed especially the deflections of prismatic bars with deformed centroidal 

axis relative to a ‘Cartesian coordinate system’, associated to a reference configuration, i.e. to an 

embedding  

                                                                     2
0 ��: E�� , 

where  E2 is the Euclidean  2- space, called  plane of deformation.  

      Here we have to mention the fact that because a bar is usually viewed as a simple uniform and 

isotropic material body, it can be assumed as a trivial manifold without boundary for which is enough 

to consider a single coordinate chart 0�  that cover the wholly body. So, E2 can be initially endowed 

with an orthogonal frame as (Axy), with the origin at fixed end  A  and with AB  along to the axis 

(Ay). 

      Different from the former papers in this paper we approach the study of the bar deflections having 

in view a deformed centroidal axis with respect to an ’intrinsic representation’. Until a point this study 

can be made in a similar way both for bars with rectangular and with curved (but symmetrical) cross-

section, that is independently of the cross-section shape. 

      This last aspect permit us to correct the differential equation of the deformed centroidal axis that 

follows from the expression  REIM /1��   of the bending moment. 

      Thus, the geometric aspect of the deformation will be described with respect to a new coordinate 

frame of the Euclidean affine plane E2. So, during deformation we consider a mobile orthogonal frame 

(OXY) with the origin O placed (at each time t > 0) at the free end of the centroidal axis of bar and 

with axes (OX) and (OY) parallel with the initial axes (Ay) and (Ax), respectively, but having 

opposite orientation.  

       With respect to this frame the deformed centroidal axis AO  can be looked  as an image of  

the  deflection map   

                                                                        AOAB: �� ,  

defined by means of an intrinsic equation  
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                                                               ]),,0[(),( Lss ����                                                        (1)                          

where )M~(O��s  is the arc length from the origin point  O = � �B�   to an arbitrary point M~  = � (M),  

(M� AB ), and  �   denotes the angle measure of the tangent straight line at M~  to the centroidal axis 

of the deformed bar with the positive orientation of the axis (OX), called  angle of deflection  at  M. 

We mention that here �  can be seen as a composed map, 0���� �  , where �  is another 

configuration in  E2 of the centroidal axis AB  which becomes at time t ( > 0)  a curvilinear arc AO ; 

(1) is called   intrinsic equation   of the deformed bar. 

       Further, we use the exact expression of the curvature 

                                                                              
ds
d

R
�

�
1

                                                                  (2) 

instead of the approximate one  d2y / dx2, which is frequently used by many researchers in order to 

obtain a second order differential equation that can be easily integrated. In such a case the general 

method adopted to reduce he nonlinearity degree of the differential equation describing the bar 

deformation makes use of the Cebishev’s polynomials. 

      The deformations of a slender bar such as is considered above by an equation of Bessel type are 

described: 

                                                              ,0)cos(2

2

���� ��� s
EI
w

ds
d

                                               (3) 

where  w  is the specific weight per unit length and  �   is the angle measure of undeformed bar with 

the horizontal plane. 

      Exact solutions of (3) are known for the cases of horizontal ( � = 0) or vertical (� = 2/� ) initial 

positions of the bar. 

       For instance, in the case of a vertical bar the deflection �   by a linear equation is described (see 

Denman and  Schmidt, [1970]) :  

                                                                 02
12

2

��� �� s
ds
d k ,                                                          (4I) 

where   

                                                               EIwJ �� �� /)(k 1
2

1 2                                                         (5) 

is a constant depending on the Bessel function 

                                                   ��
����

�

�
�����

��
� dJ 2

1)(sin1)( 22
1 .  
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      We  note, this equation is obtained from (3) taking � = 2/�   and   sin �
�
�

� ��
)(2 1J

   on the 

symmetric real interval  [- �� , ]. 

      In this case the known general solution of  (4I ) is 

                                                )
3
2()

3
2( 2

3

3
1

2
1

2
3

3
1

2
1 ksJBsksJAs ���� , 

where  A, B  and  k are constants.   

      One can see that this exact solution is not quite a simple one because of more difficulties of the 

integrals computing. This is the reason we tray to find an alternative solution by means of the bar 

discretization; the solution so obtained is consisting in a recursive approximation.  

      Finally, we end the introduction with the following remark. 

      In this study the bar is considered to be vertical. However, the differential equation (4I) will be 

used only in the case when the load P is vertically too, while when direction of P is oblique it is better 

to make use of another differential equation of the deformed centroidal axis obtained from the bending 

moment equation. So, expressing the moment  M  in two different ways, we have 

                                                          XPYP
ds
dEI YX �����
�

� ,                                                    (4II) 

where YX PP ,  are the projections of  P  on the axes (OX), (OY), respectively, and  X, Y  are the 

coordinates of the point  M~  with respect to these axes. 

      In this case, another positive constant will be useful in our study: 

                                                                      EIP /2
0 �k .                                                                    (6) 

      Let  C  be the intersection point of the straight line which defines the direction of  P  with the (Ay) 

axis of the initial frame and denote by  c  its distance to the free end  B  of the bar. If the measure of 

the angle of the previous two straight lines is accepted to be small, we can approximate by P the 

projection XP , i.e. .PPX   Thus, if  !   is the horizontal displacement during the bar deflection of 

the free end B, i.e. (Ay))(O,d�! (see Fig.1), by a geometrical reason, it follows  cPP XY // �! , 

which implies that  .
c

PPY
!
�  

      On the other hand we know that at each point M~ (X, Y) the relations                                                     

                                                          ���� sin,cos
ds
dY

ds
dX

 

are specific for a plane curve given in an intrinsic representation, such as (1). 
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      Thus, by derivation of the equation (4II) with respect to s, this one can be 

)cos(sin2
02

2

�
!

����
�

cds
d k                                                       

or, still,  

                                             �
� 2)(

2
1

ds
d

ds
d

ds
d

c
�

�
!

��� )cos(sin2
0k    

      Multiplying this equation by  ds  and integrating it one obtains                                                                        

                                                   C
cds

d
��

!
���

� )sin(cos)(
2
1 2

0
2 k ;                                               (7) 

the integration constant C can be found with the help of boundary conditions (8), given bellow. 

                                                                   
                            Fig.1.     Bar deflection under the action of an oblique load P 

 

2.    Boundary value problems and the bar discretization.   

      Consider a deformed bar and assume the deformation  �   consists in a deflection only, which 

means the cross-sections remain undeformed. 
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      The plane of minimal bending rigidity, which is at the same time the plane of symmetry,  

determines the longitudinal section in the bar and contains the points A, M, and M~ . This plane will be 

denoted by  "L

)M~M,A,(
, called plane of deformation, being spanned by the vectors 2e~  and 3e~  of the 

orthogonal Darboux frame }e~,e~,e~;~{ 321M  associated to the middle surface S~ = � (S) of the 

deformed bar, where S denotes the middle surface (see a mathematical definition in our book [11], 

p.35) of bar at the initial state. Here we have to mention that S is unique only in the case of prismatic 

(initially, curved or not) bars, while the round bars have before deformation an infinite number of 

middle surfaces consisting in all plane sections containing centroidal axis. But, during the deformation, 

S~  can be defined as a surface containing the deformed centroidal axis, symmetric with respect to it, of 

which tangent plane at each point  )(MM~ ��  is spanned by the pair { 21 e~,e~ } of orthogonal vectors, 

while 3e~  is a unit normal vector to S~ , tangent to the trajectory #~  of the point  )(MM~ ��  during the 

deflection, that is to the  orbit  of  M  by the deformation  � . This curve is not contained by S~ . But, 

the pair { 21 ## ~,~ } of curvature lines of S~  at each point )(MM~ ��  are assumed to be the plane 

curves: intersection of S~ with cross-section and the deformed centroidal axis, respectively. These 

curves are tangent to { 21 e~,e~ }, correspondently.  

      Similarly, "T

M~
designates the plane of cross-section of the bar through the point  M~ ; it is 

spanned by the vectors 1e~  and 3e~  of the previous frame and is tangent to the orbit #~ .  

The cross-sections at different points are assumed to remain undeformed during the deflection. 

      Let  
   be the measure (in radians) of the angle $ ( 22 e,e~ )  at the deformed position  O  of the 

free endpoint  B  and  �   the similar angle at current position M~ . 

      Taking �(s ))~( MO�  as a parameter relative to its interval of variation, [0, L], the following 

initial conditions must be satisfied: 

                                             0)(',0)(;0)0(',)0( ������
�� LL                                       (8)                          

which by a technical point of view are requested. 

     To render the problem amenable to a numerical treatment we achieve a “discretization” of the bar 

by means of a sequence of cross-section planes {" �
T ni

iM
0~ ),(, } trough the points  � �ni ,,~ 0Mi � , 

such that  OM0 %
~

  and AM n %
~ . We observe the considered above points correspond to the values 
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                                                                 *),(, Nn
n
Lisi ���                                                           (9)                           

which define a division of the interval [0, L]; the norm of division is equal to  nL�� . 

      The exact equations of the different positions in the Euclidean affine space  E3% (OXYZ) occupied 

by the deformed centroidal axis during the deflection cannot be generally known.  

       So, the deformed state of the bar caused by the action of bending load  P  can be described 

geometrically with the help of the system of values  nii }',{ ��  at a sufficient number of points of 

centroidal axis, which also permit to compute the axis curvatures  iR)( 1  at each point � �ni ,,~ 0Mi � . 

The problem is to express them with the help of some known elements.  

This is the reason of our following theorem: 

       Theorem 1. The system of values nii }',{ ��  defining the “discrete distribution” of the 

deformation state of a vertical bar with a free end, discretized by a sequence of cross-section planes 

{" �
T ni

iM
0~ ),(, }, can be estimated by recurrence formulas function only of the following positive 

numbers �
 ,, 2
0k , that represent the measure of deflection angle of the bar free endpoint, the 

constant of physical properties, and the norm of division of the discretization, respectively. In a 

similar manner can be expressed the curvatures corresponding to all the points of deformed centroidal 

axis with respect to that discretization. 

       Note.   Here we have to mention that  
   is a constant for a given load P (the charge intensity and 

its direction are known), in other words it depends of this last one.  

       Proof.    Putting  ,)( iis �� �  ( ni ,0� ), and using the well known approximation formulas 

                                            2
1111 2

2 �
���

�
�
��

� ���� ��
�

�
� jjj

j
jj

j
"' ,                                     (10)                         

for  11 �� nj , ,   and 

                                                      ,, ''

�
��

�
�
��

� 101
0

��
�

�
� nn

n                                             (10’)                        

the initial conditions (8) lead also to the approximate values of  �   at the neighboring  points of the 

endpoints: 

                                                                  ,0, 11 ��
�� �n                                                            (11)                         
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which implies that the first and the last parts of the discretization have a similar behavior as that of the 

endpoints of the bar. 

       Also one may consider the following usual approximations: 

                                          � �.,1,
6
1sin,

2
11cos 32 niiiiii ���������� .                            (12)                         

       Case II. The action of  P  is oblique. 

       Taking in view the first two initial conditions (8), corresponding to the point  O = � �B� , we can 

determine the constant  C  for the equation (7), as 

                                                              )sin(cos2
0 


!
�
��

c
C k , 

such that this one becomes 

                                           )]sin(sincos[cos2 2
0

2


��
!

�
���&
'
(

)
*
+ �

cds
d k .                                   (13)                         

       From here we can express the values of the derivatives along to the deformed bar with respect to 

the values of deflection angles at corresponding points. If we have in attention the points of chosen 

discretization, these values will be 

                                       2
1

0 )]sin(sincos[cos2)(' 
��
!

�
����� iii c
s k                           (14)                         

at all points � �ni ,,~ 0Mi � , where i�  have to be computed for this case. 

       On the other hand, we also can compute the coordinates (X, Y) of an arbitrary point M~  of the 

centroidal axis of deformed bar by evaluating the curvilinear integrals 

                                                      �� ����
ss

dsYdsX
00

sin,cos , 

if these integrals are transformed into some simple integrals with the help of arc element expressed 

from (13) as 

                                      �
��
!

�
����
� d

c
ds 2

1
)]sin(sincos[cos

2
2 -1

0k . 

But here we have to mention that such kind of integrals are not simple to be computed because of the 

complicated expression of ds. So, it remains to compute only the coordinates ),( ii YX  of the points 

� �ni ,,~ 0Mi � , of chosen discretization by using the values i�  given bellow and the values (9) of  si . 

      The initial conditions (8) are verified (for 0�s , and Ls � ) if and only if the following condition 

holds 
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c

tg !
�



2

.                                                                    (15)                         

      Moreover we also recall the validity of (11) for this case too, such that the remaining values  

of  ,2,2, ��� nkk  can be computed by means of some recurrence formulae as follows. First we 

need to express the value 2�  by integrating )('2 s�  with de help of  (12). So, we obtain 

                                             )
2

1(
2

)]1
6

(1[
2

22
0

2
22

02



�



���



��
�� tgkk ,                                  (16)                         

where nL��  is the norm of division. The value 2�  can be consider as an element of reference in 

order to compute the intermediate values of the function �  at other points of the division of the real 

interval [0, L]. The first part of its expression, 

                                                            )]1
6

(1[
2

22
0 �



��
� kA , 

represents the value of 2�  when the action of charge P is vertical. 

       In a similar way we also obtain the other values of the deflection angle at the points of 

discretization as 

       )(
22

1]11)(
6
1[ 2

1
22

22
22

1
2

2 ���� ��
�



��������



�
������ kkkkk tgAA 2
0

2
0 kk ,    (17)     

where the first part  

                                           2
22

1
2

2 ]11)(
6
1[ ��� ���



�
����� kkkk AB 2

0k  

represents the values of  �   at the nodes of division for ,2,2 �� nk  as well when the action of 

charge P is vertical. 

      These end the proof of the first part of theorem.    

      Besides, the values (14) may be used to compute the curvatures of the deformed centroidal axis at 

the points � �11M j �� nj ,,~
: 

                                                             )1,1(,)1( ��
�

� nj
ds

d
R

j
j .           (18)                          

   The curvatures corresponding to endpoints of the bar are obtained using (8) and (18) as 

                                         0)('')1(,0)0('')1( 00 ���������� L
RR nn .                          (19)                         
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       But the curvatures of centroidal axis 2#
~  at the points � �11M j �� nj ,,~

, also depend on the 

principal curvatures of the middle surface S~  of a curved prismatic bar. S~ is assumed undeformed, 

excepting a simple bending along 2#
~  such that the first curvature line 1#  of S~  remains undeformed 

during bar deflection. More precisely, these values depend on the principal curvature 2k~  according to 

the fact that 2#
~  is also a curvature line of S~ . So, we may use the formula (see Boja, Ivan, Brailoiu, 

[1987] ) 

                                                 )e~;e~~(,)(~
~

,-��� 2222
2

2
11 g
Rg

k                                               (20)                         

in order to compute the curvatures  ( 2k~ )i  of  S~  at all points � �ni ,,~ 0Mi � .  

This ends the proof. # 

 

3.     Approximate and exact formulas of the bar bending energy 
     

       In two papers published before (see Boja, Ivan, Brailoiu, [1993] and Brailoiu, Boja, [1993] ) the 

following results were established: 

       Theorem 2.  The strain energy of deformation (under a pure bending moment M) of a slender bar 

with a fixed endpoint, loaded with a charge P and acting oblique at the free endpoint, is given by the 

exact formula

                                   � ��
��



�
����
L

M dstgPU
0

cos)]sin(sin
2

cos[cos ,                        (21)                         

where  L  denotes the length of the bar, �  is defined by the centroidal axis equation (1), and 

)(0�
 �  by an initial condition is given. ## 

       Starting with a discretization of the bar with the help of the family of planes {" �
T ni

iM
0~ ),(, } 

orthogonal to the tangent straight lines to the centroidal axis at points that correspond to the sequence 

of arc values  (9) one obtain the following formulae for the energy of deformation 

                     ]cos)sin(sin
2

cos)cos(cos[
1 1
� �
� �

�
��



��
�����
n

i
ii

n

i
ii tg

n
LPU ,           (22)                

where also can be used the approximations (12). 

      This corresponds to the case I, when  P  acts vertically. So, only its measure  P  is involved. 
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      The values (21) and (22) can be evaluated when in (12) all the values  ,)( iis �� �  ( ni ,1� ), are 

known. Thus, if we make use of the constant 2
0k  introduced by (6), one can obtains by recurrence the 

asked before values. We observe the values (11) do not depend on  k0  because of the assumption that 

at the neighbor points to endpoints of the centroidal axis  

the approximation can be considered alike that at the bar extremities.  

      The vertical displacement of the free end  

                                                            � ��
L

dscostg
0

2

2
1 ���                                                         (23)                        

can be used to compute the work of the charge  P ,  ���� PT .  Thus, for a discretization as that 

considered before, we have 

                                                          �
�

��
�

��
n

i
ii costg

n
LPT

1

2

2
�� .                                                 (24)                         

     We remark the expression (24) can not be used to determine critical value of  P. 

 

4.   Numerical example 
 

   Consider a bar with the physical and geometrical characteristics given below. 

   To solve the problem exposed in the Sections 2 and 3 we used a FreeFem++ soft. 

    //*** Physical and geometrical constants of the material : Iron *** 
real L=1.60;                         //m; length of the bar 
real E=210*1e+009;           //  N*m^(-2) 
real a=2*1e-002;                 //  m ; length of an edge of the rectangular cross section    
real b=5*1e-002;                 //  m ; length of another edge of the rectangular cross section 
real vol=a*b*L;                   //  volume of the bar 
real ro=7874;                       //  kg/m^3 
real mass =vol*ro;               //  mass of the bar  
int n=24;                              //  nr of the nodal points 
real niu=L/n;                        // norm of the division 
real P=6000;                         // N; load of the bar 
real I=masa*(a^2+b^2)/12;  // inertial moment  
real k0=(P/(E*I))^(1/2); 
real theta0=1;                       // radians 
//************* Finite elements’ space *************** 
mesh Th=square(5,2); 
fespace Vh(Th,P2); 
real[int] psi(n); 
real[int] xx(n), yy(n); 
psi[0]=theta0; 
psi[1]=theta0; 
psi[2]=theta0*(1+(k0^2)*(niu^2)*((theta0^2)/6-1)); 
psi[n-1]=0; 
int i; 
for (i=3;i<n-1;i++) 
{psi[i]=psi[i-1] * (1+(1/6)*(k0^2)*(niu^2)*((psi[i-1])^2-theta0^2)+(1/theta0)*psi[2]) - psi[i-2];}; 
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for (i=0;i<n;i++) 
{xx[i]=i*niu;  yy[i]=psi[i];  cout << i << " " << yy[i] << "\n";}; 
plot([xx,yy], cmm =" grafic: theta= "+theta0+ " lungimea barei = "+L, wait=1, nbiso=20, fill=1, value=1, 
ps="lucrare2.eps");   

4.1.  Table of the values so obtained in the case of the bar loaded oblique: 
 
 
 
Node 

„i” 
is  i�  Node 

„i” 
is  i�  

0 0 1.3 12 0.8 1.06881 
1 0.0666667 1.3 13 0.866667 1.02853 
2 0.133333 1.29637 14 0.933333 0.985484 
3 0.2 1.28913 15 1 0.93982 
4 0.266667 1.2783 16 1.06667 0.891679 
5 0.333333 1.26391 17 1.13333 0.841214 
6 0.4 1.246 18 1.2 0.788588 
7 0.466667 1.22465 19 1.26667 0.733968 
8 0.533333 1.1999 20 1.33333 0.677528 
9 0.6 1.17185 21 1.4 0.619449 

10 0.666667 1.14059 22 1.46667 0.559916 
11 0.733333 1.1062 23 1.53333 0 
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