
First International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, 22-25 October, 2009

Wasp based algorithms and applications

Dana Simian

Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present

1

An Algebraic Specification for CTL with Time Constraints

Laura Florentina Cacovean

Abstract

In this paper we present the algebraic methodology and its utilization for CTL model checker
specifications. This allows the possibility of automatic generation of the model checking algorithms
for temporal logics into sets of algebraic specifications. We use ANTLRWorks for implement the all
macro-operations of CTL model checker. In this paper we extend the CTL model checker and we give
the implementation of time constraints of algebraic model checker specification. Next we give an
algebraic specification of time of CTL model checker and a case study which proof that specification
and our proposed model is correct construct.

1 Introduction
The model checkers are tools which can be used to verify that a given system satisfies a given
temporal logic formula. The model is a directed graph where the nodes represent the states of the
system and the edges represents the state transitions. The nodes and the edges can be labelled with
atomic propositions what describe the states and the transitions of the system. In order to be verified
by a given model, a property is written as a temporal logic formula across the labelled propositions
from the model. A model checker is an algorithm that determines the states of a model that satisfy a
temporal logic formula.

The algebraic methodology and its utilization in developing instruments for model checker
specifications as maps in form C:Ls.Lt [4], where Ls is the source language of temporal logic, Lt is the
target language representing sets of states of the model M and C(f�Ls)={s�M|s/f}, where is
satisfaction relation. This allows the possibility of automatic generation of the model checking
algorithms for temporal logics into algebraic specifications sets. Extensibility and flexibility of
algebraic methodology show how the model checkers for various temporal logics can be generated
from algebraic specification. In paper [1] we showed how this algebraic context can be used to the
specification of CTL (Computation Tree Logic) model checker.

2 CTL model checker

CTL model checker is branching-time logic, meaning that its formulas are interpreted over all paths
beginning in a given state of the Kripke structure. A Kripke model M over AP is a triple M=(S, Rel,

 46

Florentina Laura Cacovean

�

P:AP.2S) where S is a finite set of states, Rel0S×S is a transition relation, P:S�2AP is a function that
assigns each state with a set of atomic propositions.

A CTL formula is evaluated on a Kripke model M. A path in M from a state s is an infinite
sequence of states from S, denoted in the following with � = [s0, s1, … , si-1, si, si+1,…] such that s0=s
and (si, si+1) � Rel holds for all i � 0. We write (si, si+1) 0 � and si� �. If we express a path as � = [s0,
s1, …, si, … , sj, …], for i < j, we say that si is a state earlier than sj in � as si < sj.

Definition 1 (Syntax Definition of CTL model checker [3]) A CTL has the following syntax given in
Backus-Naur form:
f :: | |p|(¬ f1)| f11f2| f12f2| f13 f2| AX f1| EX f1| AG f1| EG f1| AF f1| EF f1| A[f1Uf2] | E[f1Uf2] (1)
where 4p�AP.

Semantic definition of CTL model checker is provided in [3]. Let M=(S, Rel, P:AP.2S) be a Kripke
model for CTL. Given any s in S, in [3] is defined whether a CTL formula f holds in state s. This is
denoted this by (M, s) f. The satisfaction relation is defined by structural induction on fourteen
CTL formulas [3].

Many model checking algorithms were developed for different temporal logics [12], thus in this
paper is presented a simple universal algorithm based on the algorithm of homeomorphism
computation which is used in an algebraic compiler [4]. The generic homeomorphism algorithm is
customized by a set of specifications to construct a model checker, implemented as an algebraic
compiler C:Ls�Lt. The specifications consist from a finite set of rules in which each of the rules
defines the syntax of some classes constructed in the source language and also the semantic values of
these constructs as expressions in the syntax of the target language.

3 Algebraic Structure of CTL

In an algebraic compiler C:Ls�Lt the source and the target language used are defined using
heterogeneous �-algebras and �-homeomorphisms [4,5]. The operator scheme of a �-algebras is a
tuple �= S,O,� where S is a finite set of states, O is it a finite set of operator names, and �:O�S*×S
is a function which defines the signature of the operators. These signatures are denoted as
�(o)=s1×s2×… …×sn�s, where s, si S, 1�i�n. A �-algebra is a tuple A5= {As}s S,Op(O) , where

{As}s S is a family of non-empty sets indexed by the states S of �, called the carrier sets of the algebra,

and Op(O) is a set of operations across the sets in {As}s S such that for each o�O with signature
	(o)=s1×s2×…×sn�s, Op(o) there is a function Op(o):As1×As2×...×Asn �As. In the following Op(o) is
identified with O. A �- algebra is a tuple defined through L= Sem,Syn, L:Sem�Syn [4], where Sem
is a �- algebra called the semantic language, Syn is a �- word or a term algebra called the syntax
language and L is a partial mapping called the language learning function.

In order to define a CTL model as a �-language, shall define an operator scheme �ctl as the tuple
Sctl, Octl, 	ctl where the states Sctl={F} are mapping the formulas f [4] and Octl = {true, false, 6, 1, 2,
., AX, EX, AU, EU, EF, AF, EG, AG} [1]. In this paper it imports us to know just until operation, AU
and EU. Therefore we show the description in Semctl algebra of �ctl just for AU formulas.

Operator Description in Semctl algebra
�ctl (U):F� F.F if f1,f2�SemF then A [f1U f2]� SemF

Table 1 Operator scheme 5ctl in Semctl algebra

 47

An Algebraic Specification for CTL with Time Constraints

�

CTL can be defined as the 5ctl-language given in the form Lctl=-Semctl, Synctl, L ctl:Semctl.Synctl,.
Synctl is the word algebra of the operator scheme 5ctl generated by the operations from Octl and a finite
sets of variables, denoting atomic propositions, AP. Semctl represents CTL semantic algebra defined
across the satisfied sets of CTL formulas for a given model M. L ctl is a mapping which associates
satisfiability sets in Semctl from the CTL expressions in Synctl that they satisfy and 7ctl is a
homeomorphism that evaluates CTL expressions in Synctl to their satisfied sets in Semctl. Although the
rules for forming CTL formulas are independent of any model, the signification of the resulting
formulas is dependent upon a given model. Thus in the algebraic definition of CTL, Synctl is
independent from any model while Semctl is dependent on the given model M. The word algebra Synctl
is unique into homeomorphism in the class of algebras with operator scheme 5ctl. This has as the
carrier set SynF, the collection of CTL formulas. This is called terms or words, created by the
juxtaposition of variables from AP and the operator symbols from Octl according to the rules shown in
Table 1.

3.1 Algebraic structure of model
The CTL model checker algorithm maps the CTL formulas in the syntax algebra Synctl. In order

to understand these mappings in [4] is structured the model M=-S,Rel,P:AP.2S, as a 5-language
whose syntax algebraic contains the sets of the expressions and whose semantics algebra contains the
sets of 2S. The operator scheme for this language is 5sets=-Ssets,Osets,�sets, where Ssets={S,B}, S is the sort
for sets, B is the sort for the boolean values, Osets={S, Ø, C, 8, 9, Imply, Urmall, Urmsome, LFPall,
LFPsome, Allglobal, Allfuture, Existglobal, Existfuture} and �sets is shown in Table 1. In [1] we used different
symbols to denote the operations, because the operators in Semctl operate on sets and the operators
from Synctl operate on terms. The operators from Semctl corresponding to the names {true, false, 6, 1,
2, ., AX, EX, AU, EU, EF, AF, EG, AG} in Octl of 5ctl are respectively named {S, Ø, C, 8, 9,
Imply, Urmall, Urmsome, LFPall, LFPsome, Allglobal, Allfuture, Existglobal, Existfuture}. The model M defined as
5sets-language LM=-Semsets, Synsets, Lsets: Semsets . Synsets,, where 7sets: Synsets . Semsets evaluates set
expressions to the sets they represent. In this language, Semsets is the semantic algebra with the carrier
sets SemS =2S and SemB ={true, false}. The operators in the algebra and their signatures as defined by
�sets are shown in [1]. We retain that semantic Semsets and Semctl have the carrier sets in the relation
SemF 0 SemS. This allows due to similarity to show in the scheme all elements of carrier sets of Semctl
through their occurrences in the carrier sets Semsets.

3.2 Algebraic description of CTL model checker
A CTL model checker defined as an algebraic compiler C:Lctl.LM by pair of embedding morphisms
-TC,HC,. TC: Synctl . Synsets maps CTL formulas from word algebra Synctl to set expressions in Synsets,
which evaluate to the satisfiability of sets of the CTL formulas, HC : Semctl . Semsets, maps sets in
Semctl by the identity mapping to sets in Semsets and thus is constructed using the following approach
[4,10]:

1. Associate each operation octl from algebra Semctl with a set expression d(octl) from algebra
Synsets with the property HC(octl(s1, … ,sn))=7sets(d(octl)(dctl(s1), …, dctl(sn))).

o�Semctl Dctl (o)� Synctl
LFPall(t1,t2) Z:=:; Z':= dctl(t2); Z'':= dctl(t1);

while (Z;Z') do Z:=Z'; Z':=Z'9(Z''8 {s�S|succ(s)0 Z'}); end
while
dctl(LFPall(t1,t2)):=Z';

Table 2 The construction of d over the generators and operations Semctl and Synctl

 48

Florentina Laura Cacovean

�

2. The set of expressions from the second column of table 2 defines the operations of an algebra
Syn'sets which is similar to the operations from Semctl and from Synctl.

3. Syn'sets is a sub-algebra of Synsets, the embedding TC : Synctl . Syn'sets is constructed by the
composition of T<C and injection function I : Syn'sets . Synsets, given by TC=T<C = I.

The morphisms TC and HC thus constructed make the diagram commutative. Commutatively assures
the fact that TC keeps the meaning of the formulas from Synctl when mapping them to set expressions
in Synsets. The diagonal mapping Dctl:Semctl.Synsets is generated by dctl defined in table 2 and shows
the translation process performed by TC using derived operations [4].

4 Algebraic implementation of CTL
Construction of TC in the Subsection 3.2 can be entered into an algorithm which implements the CTL
model checker. This algorithm is universal in the sense that being given operator scheme 5ctl and a
model M, the model checker Lctl

is automatically generate from the specifications of -5ctl, Dctl,. This
specification is obtained by associating each operation o�Octl with an derived operation dctl(o)� Dctl.
To define derived operations that implement the operations of 5ctl, from the Synsets algebra, we use
meta-variables that take as values the set expressions of the carrier sets of Synsets. For each operation
o�Octl such that �ctl(o)=s1×…×sn.s, dctl(o) takes as the formal parameters the meta-variables denoted
by @i, 1> i> 2, where @i denotes the set expression associated with i-th argument of dctl(o); the meta-
variable @0 is used to denote the resulting set expression, as example @0=dctl(o)(@1,…, @n) [1,4].

The CTL rules set which are directly specified in the algebra Sinctl can be ambiguous, therefore it is
necessary that the set F from Sinctl to be divided in the non-terminal symbols denote with Ctlformula,
Formula, Factor, Termen and Expresie. Thus, the defined rules deliver non-ambiguous specification
in algebra Sinctl.
In following we show the specification of AU formula

Ctlformula . ”(” Ctlformula ”au” Ctlformula ”)” ;
Macro: sets Z,Z1,Z2;
 Z:=empty_set;Z1:=@3; Z2:= @1;
 while(Z not_equiv Z1) do
 Z:=Z1; Z1:=Z1 union {Z2 intersect {s in all_setS | (succ(s)subset Z1)}};
 endwhile
 @0:=Z1;

The ANTLR 3 [6] tools are used for the construction of software instruments as translators,

compilers, recognition and parser of static/dynamic programs. The ANTLR is a generator of
compilers; it receives as input a grammar, with a precise description of a language, and generates
the source code and other auxiliary files for lexer and parser. The source code of our ANTLR
grammar presented in paper [1] must contain the specification of all macro-operations presented in
the section 3. We “decorate” the grammar for formula language with actions. ANTLR inserts our
actions in the generated code for parser, and parser must execute embedded actions after matching
the preceding grammar element. This is the mechanism of formula evaluation for a given model.
In ANTLRWorks was implemented all macro-operations of CTL model checker. The program
receives as input the model M where are defined the sets S, Rel and P.

The detailed specification of AU operation defined in table 2 as actions in ANTLR grammar are
presented in the following:

ctlFormula returns [HashSet set]

 49

An Algebraic Specification for CTL with Time Constraints

�

@init {System.out.println("Incepe..."); init();}
: '(' c1=ctlFormula 'au' c2=ctlFormula ')'
 { HashSet rez = new HashSet(); ///Z:=:;
 HashSet rez1 = new HashSet($c2.set); /// Z':= dctl(t2);
 HashSet rez2 = new HashSet($c1.set); // Z'':= dctl(t1);

 while (!rez.equals(rez1)) {
 rez.clear();rez.addAll(rez1);
 HashSet tmp = new HashSet();
 boolean include;
 for (int i=0; i<MAX_STARI; i++) {
 include = true;
 for (int j=0; j<MAX_STARI; j++)
 if (rel[i][j]==1)
 if (!(rez1.contains(new Integer(j))))
 include = false;
 if (include) tmp.add(new Integer(i));
 }
 tmp.retainAll(rez2); rez1.addAll(tmp);
 }
 trace("ctlFormula",1);
 printSet(" (" + $c1.text + " au " + $c2.text + ") ",rez1);
 $set = rez1;
 }

The behavior of the model checker algorithm demonstrated in [1] consists of identifying the sets of
states of a model M which satisfy each sub formula of a given CTL formula f and constructing the set
of states, from these sets, that satisfy the formula f. This is certainly the behavior of the algorithm for
the homeomorphism computation performed by an algebraic compiler. Thus is evaluated an
expression by repeatedly identifying its sub expressions and replacing them with their images in the
target algebra. In the case of the model-checking algorithm, sub expressions are CTL sub formulas and
their images are the sets of states in the model satisfy the sub formulas.

5 Algebraic specification of Real-Time CTL extension of CTL
model checker
Many times we need to specify when an event is necessary to be happened. For this we need a clock
can measure the time. The main idea is to add the feasible constraint clock to states and transition.
Formal verification methods have been developed to reason about the correctness of a system with
respect to a given specification. In particular, model checking [7] of temporal logics has become one
of the most successful verification techniques. Using this technique requires to adequately model a
system by a finite state transition system so that specifications given in temporal logics can be checked
for that model.

Real-time systems must perform certain actions within limited time bounds or should start actions
only after some point of time. It is therefore natural to label the transitions of the abstract transition
system by numbers that denote the time required to move from one state to another one. In general, a
transition from state s1 to state s2 with label k�N means that at any time x, where we are in state s1, we
can perform an atomic action that requires k units of time. The action terminates at time x+k, where we
are in state s2.

The development of discrete real-time extensions of CTL has been initiated in [8], where the
temporal operators have been extended by time bounds to limit the number of fixpoint iterations

 50

Florentina Laura Cacovean

�

required to evaluate the considered temporal expression. The models used in [8] were still traditional
finite-state transition systems where each transition requires a single unit of time. In order to represent
real-time systems in a more compact way, [9] introduced timed transition systems, where transitions
are labelled by natural numbers that denote the time consumption of the action associated with the
transition.

For come to an CTL model checking which generate a real time logic is necessary to extend the
CTL model with an until bounded operator. This operator contains an interval with a lower bound,
denoted with mi, and an upper bound, denoted with ms, of time step number who allow the transition
from one mi time to an ms time until an event to must happen. For this extension of CTL model
checking is necessary to extend and modify the target language of sets to handle the various temporal
logics.

A real time CTL model checker, denoted CTLT is extending via adds a single specification rule. In
this case the until operator U have attached an interval of time denoted by [mi,ms] which represent
when the clock begin to measure and when is stop for that event happened.

Be f1 and f2 two CTLT formula holds on a path � = [s0, s1, …, si, … , sj, …] if f2 holds on some
states si, mi�i�ms and f1 holds on all states sj, 0�j�i.

Definition 2 (Syntax Definition of CTLT model checker) If f1 and f2 are CTLT formula and mi,ms�N
then the syntax of CTLT can be given in Backus-Naur form:
 f :: | |p|(¬ f1)| f11f2| f12f2| f13 f2| AX[mi,ms] f1| EX[mi,ms] f1|
 AG[mi,ms] f1| EG[mi,ms] f1| AF[mi,ms] f1| EF[mi,ms] f1| (2)
 A[f1U[mi,ms]f2] | E[f1U[mi,ms]f2]
where 4p�AP.
Definition 3 (Semantic Definition of CTLT model checker) Let M=(S, Rel, P:AP.2S) be a Kripke
model for CTLT, and s in S, then the semantics of the logic is recursively defined as follows:

 (M, s) and M, s for all s � S.

 (M, s) p iff p � P (s).

 (M, s) ¬f iff (M, s) f.

 (M, s) f1 f2 iff (M, s) f1 and (M, s) f2.

 (M, s) EX[mi,ms] f iff for some s1 such that s�s1, (M, s1) f.

 (M, s) E[f1 U[mi,ms] f2] holds iff some a path [s0, s1, s2, …], where s0 = s, and some i with

(mi<i<ms) and si f2 and all j [0 j <i then sj f1].

 (M, s) A[f1 U[mi,ms] f2] holds iff all paths [s0, s1, s2, …], where s0 = s, and some i with

(mi<i<ms) and si f2 and all j [0 j <i then sj f1].

Algebraically the CTL algebra SynCTL is extend to SynCTLT which is a heterogeneous algebra with
carrier sets F and N where F is the carrier set of SynCTLT formulas and N is the carrier set of positive
integer constants used in the until bounded operator. The until operation is defined by U:F/�F�N�N
.F. The construct formulas use the bounded until operator and is represented in the algebraic
specification of the model checker as BNF rules. The algebraic specifications used to generate model
checking implementation for CTLT are the same with CTL with the addition of bound.
In following we show the specification of AU formula in CTLT model checker

Ctlformula . ”(” Ctlformula ”au” ”[” mi ”,” ms ”]” Ctlformula ”)” ;
Macro: sets Z,Z1; unsigned integer ms,mi,count;
 Z= empty_set; Znew:= empty_set; Z1:= @2; Z2=@9;

 51

An Algebraic Specification for CTL with Time Constraints

�

 mi=@5;ms=@7;count=mi;
 while ((Z1 not_equiv empty_set) and (count�ms)) do
 Z:=Z1;
 Znew:= Z2 intersect {s in all_setS | (succ(s) subset Z1)};
 if(count�mi and count�ms)
 Z1:=Z1 union Znew;
 endif
 count:=count+1;
 endwhile
 @0:=Z1;

Correctness of a system depends in some cases on the exact timing of events. As a consequence,

the models must include the time at which events occur. A usually used formalism to model and
reason about timed systems is timed automata [11]. In next section we show an example where we
used a timed automaton which is an extension of finite state automata that define a set of real-valued
clock variables.

5.1. Train Gate Controller Example
In this subsection we construct two figures which represent the description of Train Gate

Controller.
Problem description for Train Gate Controller is: Consider a trackage crossing whose physical

layout is represented in Fig.1. There have a road crossing a trackage. Trains and cars cross the
passageway area in turns. The crossing involves a gate who keeps the barrier up while the train not
coming. The trackage have four sensors detecting when a train enters respectively exits the crossing.
When the train approach and cross the first sensor the gate begin to close and also the clock begin to
measure. The system consists of three main components, the trackage, the road, the controller, and its
behaviour.

Based on these sensor signals, a controller should signal the gate to open/close. In following we
prove the properties for the system: When a train is in the crossing, the gate is closed.

In Fig. 1 we show the trackage who was split in three regions. The first region, denoted by I,
represent the process when the closing gate because the train approach. The second region, denoted by
II, represents the process when the gate is close and the car waiting the train. The third region, denoted
by III, represents the process when the opening gate because train move away. All the three regions
contain a clock that is start when the train rive over the first red point. In enounce problem we named
this red point with sensor. Red Points, represent by , means that clock start for counting. When the
clock is start the gate moving down. In our example we choose the time for closing/opening gate to 6
time units and 8 time units for close gate. For all three regions the time is a parameter who can be
modified in terms of various situation, e.g. when the train go fast or slower. Return to our example the
action for first region happens in 6 time units until the train rive over the second red point. The clock is
bounded with a lower bound, denoted by mi, and the upper bound, denoted by ms. Because the first
region has 6 time units, the clock can measure time � R
0. A clock constraint of form mi�x�ms. That
is mi:=0, count:=0, 0�x�6. When the count is 6 means the time is up and the gate is close. In the right
side of Fig 1 we show how we split the time in three regions.

Definition 4 The clock are usually written by x,y,…, sets of clock are Clock1, Clock2, … A clock-
constraint, denoted with Clock_Con(Clock), over clocks Clock is g�Clock_Con(Clock) where
g::=x<c|x�c|x�c|x>c|g1g where g�Clock_Con(Clock) and c�N.

 52

Florentina Laura Cacovean

�

Fig 1. Description time for Train Gate Controller Fig 2. The CTL structure of Train-gate
Controller

As example we present in Fig. 2 a scenario for a train gate control system. The state-transition
diagram showed in Fig. 2 has four locked-state events. These locked-state events occur because the
Gate Train Controller, in most instances, takes one action and then awaits a response before moving
for a new state. In fact, only three event flows, Move Up Request, Move Down Request and Start the
clock (when we denote with Up and Down the move state when the request exist) do not qualify as
locked-state events, because each of them can arrive any time a train and the clock start. The
remaining events can occur while the train on-coming to the gate.

Suppose that we have a train gate control which includes in first case a process for normal moving
of gate (like, {s0,s3}) and in second case a faulty process (like, {s0,s1,s2}). In first case for the normal
moving of gate process, doesn’t shall appear the errors, so the gate is closing and opening normal. The
Clock is start to counting and cars are shall be stop when the gate is moving or is down. The second
process is the faulty process, when the gate doesn’t moving when the Clock is start to counting. We
construct this form of model, to find where the faulty process is, because the objective of model is to
correct the event which contains the faulty process. CTL structure for the train-gate control is
presented in the Fig. 2 and states of the system are denote with s0, s1,…, s3.

The Kripke model has four states and the propositional variables are from the set {Start, Up,
Down, Error}. Start represented the start Clock when start moving up or down the gate train, Up
represent the Up gate, Down is the Down gate and Error means occur some error.

The formal definition of the Kripke structure of the train-gate control is given by: M = (S, Rel, P),
where S={s0,s1,s2,s3}, Rel={(s0,s0),(s0,s1), (s0,s3), (s1,s2), (s2,s3), (s3,s0), (s3,s2), (s3,s3) }, AP={Start,Up,
Down, Error}, P assigns state s0 in M with not Start, Up, not Down and not Error, that is set
{?Start,Up, ? Down,? Error}. P assigns state s1 in M with {?Start,Up,?Down,Error}, the state s2 in M
with {? Start,?Up, Down,Error}, the state s3 in M with {Start,?Up, Down,? Error}.

 53

An Algebraic Specification for CTL with Time Constraints

�

If the path � = s0.@1 s1 .@2 s2.@3 s3….@n sn is a time-divergent compressed path then �� f1

U[mi,ms] f2 if and only if there is some i such that si +d f2 for some d�[0,di] with d+5k=0,…,i-1

dk�[mi,ms] and for all j�I and all d��[0,dj] such that d�+5k=0,…,j-1 dk�d+5k=0,…,i-1 dk the relation sj +d�

f1 2f2 is valid. This represents the semantics of CTLT and is inspired from [2]. For our example the
path can be write like � = s0.@1 s3 .@2 s3.@3 s0 where we define the execution like

ExecutionTime(�)= 5@i�R
�0. That is � = s0 .6 s3.8 s3.6 s0%s0 .6 s0 +6 .a s3.8 s3 +8.b s0 .6 s0 +6.

In our example we have three regions. Here we have three clock constraints consists of atoms x < |
� |
 | > | c for some c�N by definition 4. Consider clocks x,y,z and regions Reg=”x�(0,6]1
y�(6,14]1z�(14,20]” like in Fig 3.

Fig 3. Transition in Region Transition System

Remarks on Region Transition System [2] are Reg g if and only if for all ��Reg with � g if and

only if there exists ��Reg with � g then there is no ambiguity in the labelling. Clock constraints of f
CTLT formula become atomic propositions in Region Transition System, RTS(TA,f), where TA is the
timed automata defined in [2] and TA f represent the semantics CTLT.
 Return to our model we check up the following properties: Is the gate closed for less then
8 minute? The formula is, TA A((Up1? Error) U[7,14] (Down1? Error)).

We showed at first of this section AU formula specification in CTLT model checker.
Beginning of this the A((Up1? Error) U[7,14] (Down1? Error)) formula executing like bellow:

We initialize all sets with Z:= empty_set; Znew:= empty_set; Z1:= @2; Z2=@9; where Z1
is set with state Up1? Error. This state is {s0}. Z2 is set with state Down1? Error. This state is
{s3}. The Znew set is constructing with all state s from all_setS which have the successor in Z1
and intersect with Z2 set. We initialize all positive integers with mi=@5,ms=@7,count=mi.
That is mi=7;ms=14;count=mi;

 while (({s0} /; :) and (7�14)) do
 Z:=Z1={s0};
 Znew:= {s3}8{s0,s3}={s3};
 if(7�7 and 7�14)
 Z1:={s0}9{s3}={ s0,s3};
 endif
 count:=7+1=8;
 Return to while in next step

 while (({s0,s3}/; :) and (8�14)) do
 Z:=Z1={s0,s3};
 Znew:= {s3}8{s0,s2,s3}={s3};
 if(8�7 and 8�14)
 Z1:= {s0,s3}9{s3}={ s0,s3};
 endif

 54

Florentina Laura Cacovean

�

 count:=8+1=9;
 Return to while in next step until count:=14

Fig 4. Interpretation step by step for AU formula in CTLT model checker

If count is between mi and ms bound of until operator these nodes are added to the set of
states satisfying formula. The loop terminates when no new nodes are added or the number of
steps exceeds the upper limit. The correctness of implementation is given in Fig. 4 for our
proposed model.

6 Conclusion
The behaviour of the real time model checker algorithm demonstrated in the section 5 consists of
identifying the sets of states of a model M which satisfy each sub formula of a given CTLT formula f
and constructing the set of states, from these sets, that satisfy the formula f over the bound. This is
certainly the behaviour of the algorithm for the homeomorphism computation performed by an
algebraic compiler. Thus is evaluated an expression by repeatedly identifying its sub expressions and
replacing them with their images in the target algebra. In the case of the real time model-checking
algorithm, sub expressions are CTLT sub formulas and their images are the sets of states in the model
satisfy the sub formulas.

References
[1] Laura Cacovean, Florin Stoica, Algebraic Specification Implementation for CTL Model Checker Using

ANTLR Tools, 2008 WSEAS International Conferences, Computers and Simulation in Modern Science -
Volume II, Bucharest, Romania, Nov. 2008, ISSN: 1790-5117, ISBN: 978-960-474-032-1

[2] http://www-i2.informatik.rwth-aachen.de/i2/fileadmin/user_upload/documents/AMC09/amc_lec15.pdf
[3] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge

University Press, 2000.
[4] E. Van Wyk, Specification Languages in Algebraic Compilers, Theoretical Computer Science, 231(3):351-

-385, 2003
[5] P.J. Higgins. Algebras with scheme of operators. Mathematische Nachrichten, No.27, 1963/64
[6] Terence Parr , The Definitive ANTLR Reference, Building Domain-Specific Languages, version: 2007
[7] E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons using Branching Time

Temporal Logic. In D. Kozen, editor, Workshop on Logics of Programs, volume 131 of Lecture Notes in
Computer Science, 1981.

[8] E. Emerson, A. Mok, A. Sistla, and J. Srinivasan. Quantitative Temporal Reasoning. Journal of Real-Time
Systems, 1992.

[9] S. Campos and E. Clarke. Real-Time Symbolic Model Checking for Discrete Time Models. Theories and
Experiences for Real-Time System Development, AMAST Series in Computing.World Scientific Press,
AMAST Series in Computing, 1994.

[10] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verifications of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems, Vol. 8,
No. 2, April 1986

[11] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 25
April 1994.

LAURA F. CACOVEAN
Lucian Blaga University of Sibiu, Faculty of Sciences
Department of Computer Science
Str. Dr. Ion Ratiu 5-7, 550012, Sibiu
ROMANIA
laura.cacovean@ulbsibiu.ro

 55

