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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract 

In this paper we present the algebraic methodology and its utilization for CTL model checker 
specifications. This allows the possibility of automatic generation of the model checking algorithms 
for temporal logics into sets of algebraic specifications. We use ANTLRWorks for implement the all 
macro-operations of CTL model checker. In this paper we extend the CTL model checker and we give 
the implementation of time constraints of algebraic model checker specification. Next we give an 
algebraic specification of time of CTL model checker and a case study which proof that specification 
and our proposed model is correct construct. 

1 Introduction 
The model checkers are tools which can be used to verify that a given system satisfies a given 
temporal logic formula. The model is a directed graph where the nodes represent the states of the 
system and the edges represents the state transitions. The nodes and the edges can be labelled with 
atomic propositions what describe the states and the transitions of the system. In order to be verified 
by a given model, a property is written as a temporal logic formula across the labelled propositions 
from the model. A model checker is an algorithm that determines the states of a model that satisfy a 
temporal logic formula.  

The algebraic methodology and its utilization in developing instruments for model checker 
specifications as maps in form C:Ls.Lt [4], where Ls is the source language of temporal logic, Lt is the 
target language representing sets of states of the model M and C(f�Ls)={s�M|s/f}, where  is 
satisfaction relation. This allows the possibility of automatic generation of the model checking 
algorithms for temporal logics into algebraic specifications sets. Extensibility and flexibility of 
algebraic methodology show how the model checkers for various temporal logics can be generated 
from algebraic specification. In paper [1] we showed how this algebraic context can be used to the 
specification of CTL (Computation Tree Logic) model checker. 

2   CTL model checker 

CTL model checker is branching-time logic, meaning that its formulas are interpreted over all paths 
beginning in a given state of the Kripke structure. A Kripke model M over AP is a triple M=(S, Rel, 
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P:AP.2S) where S is a finite set of states, Rel0S×S is a transition relation, P:S�2AP is a function that 
assigns each state with a set of atomic propositions.

A CTL formula is evaluated on a Kripke model M. A path in M from a state s is an infinite 
sequence of states from S, denoted in the following with � = [s0, s1, … , si-1, si, si+1,…] such that s0=s 
and (si, si+1) � Rel holds for all i � 0. We write (si, si+1) 0 � and si� �. If we express a path as � = [s0, 
s1, …, si, … , sj, …],  for i < j, we say that si is a state earlier than sj in � as si < sj.  

Definition 1 (Syntax Definition of CTL model checker [3]) A CTL has the following syntax given in 
Backus-Naur form: 
f :: | |p|(¬ f1)| f11f2| f12f2| f13 f2| AX f1| EX f1| AG f1| EG f1| AF f1| EF f1| A[f1Uf2] | E[f1Uf2]      (1) 
where 4p�AP. 
 
Semantic definition of CTL model checker is provided in [3]. Let M=(S, Rel, P:AP.2S) be a Kripke 
model for CTL. Given any s in S, in [3] is defined whether a CTL formula f holds in state s. This is 
denoted this by (M, s)  f. The satisfaction relation  is defined by structural induction on fourteen 
CTL formulas [3]. 

Many model checking algorithms were developed for different temporal logics [12], thus in this 
paper is presented a simple universal algorithm based on the algorithm of homeomorphism 
computation which is used in an algebraic compiler [4]. The generic homeomorphism algorithm is 
customized by a set of specifications to construct a model checker, implemented as an algebraic 
compiler C:Ls�Lt. The specifications consist from a finite set of rules in which each of the rules 
defines the syntax of some classes constructed in the source language and also the semantic values of 
these constructs as expressions in the syntax of the target language. 

3 Algebraic Structure of CTL 

In an algebraic compiler C:Ls�Lt the source and the target language used are defined using 
heterogeneous �-algebras and �-homeomorphisms [4,5]. The operator scheme of a �-algebras is a 
tuple �= S,O,�  where S is a finite set of states, O is it a finite set of operator names, and �:O�S*×S 
is a function which defines the signature of the operators. These signatures are denoted as 
�(o)=s1×s2×… …×sn�s, where s, si S, 1�i�n. A �-algebra is a tuple A5= {As}s S,Op(O) , where 

{As}s S is a family of non-empty sets indexed by the states S of �, called the carrier sets of the algebra, 

and Op(O) is a set of operations across the sets in {As}s S such that for each o�O with signature 
	(o)=s1×s2×…×sn�s, Op(o) there is a function Op(o):As1×As2×...×Asn �As. In the following Op(o) is 
identified with O. A �- algebra is a tuple defined through L= Sem,Syn, L:Sem�Syn   [4], where Sem 
is a �- algebra called the semantic language, Syn is a �- word or a term algebra called the syntax 
language and L is a partial mapping called the language learning function. 

In order to define a CTL model as a �-language, shall define an operator scheme �ctl as the tuple 
Sctl, Octl, 	ctl  where the states Sctl={F} are mapping the formulas f  [4] and  Octl = {true, false, 6, 1, 2, 
., AX, EX, AU, EU, EF, AF, EG, AG} [1]. In this paper it imports us to know just until operation, AU 
and EU. Therefore we show the description in Semctl algebra of �ctl just for AU formulas. 

Operator Description in Semctl algebra  
�ctl (U):F� F.F if f1,f2�SemF then A [f1U f2]� SemF 

Table 1 Operator scheme 5ctl in Semctl algebra 
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CTL can be defined as the 5ctl-language given in the form Lctl=-Semctl, Synctl, L ctl:Semctl.Synctl,. 
Synctl is the word algebra of the operator scheme 5ctl generated by the operations from Octl and a finite 
sets of variables, denoting atomic propositions, AP. Semctl represents CTL semantic algebra defined 
across the satisfied sets of CTL formulas for a given model M. L ctl is a mapping which associates 
satisfiability sets in Semctl from the CTL expressions in Synctl that they satisfy and 7ctl is a 
homeomorphism that evaluates CTL expressions in Synctl to their satisfied sets in Semctl. Although the 
rules for forming CTL formulas are independent of any model, the signification of the resulting 
formulas is dependent upon a given model. Thus in the algebraic definition of CTL, Synctl is 
independent from any model while Semctl is dependent on the given model M. The word algebra Synctl 
is unique into homeomorphism in the class of algebras with operator scheme 5ctl. This has as the 
carrier set SynF, the collection of CTL formulas. This is called terms or words, created by the 
juxtaposition of variables from AP and the operator symbols from Octl according to the rules shown in 
Table 1.  

3.1 Algebraic structure of model 
The CTL model checker algorithm maps the CTL formulas in the syntax algebra Synctl. In order 

to understand these mappings in [4] is structured the model M=-S,Rel,P:AP.2S, as a 5-language 
whose syntax algebraic contains the sets of the expressions and whose semantics algebra contains the 
sets of 2S. The operator scheme for this language is 5sets=-Ssets,Osets,�sets, where Ssets={S,B}, S is the sort 
for sets, B is the sort for the boolean values, Osets={S, Ø, C, 8, 9, Imply, Urmall, Urmsome, LFPall, 
LFPsome, Allglobal, Allfuture, Existglobal, Existfuture} and �sets is shown in Table 1. In [1] we used different 
symbols to denote the operations, because the operators in Semctl operate on sets and the operators 
from Synctl operate on terms. The operators from Semctl corresponding to the names {true, false, 6, 1, 
2, ., AX, EX, AU, EU, EF, AF, EG, AG} in Octl of 5ctl are respectively named {S, Ø, C, 8, 9, 
Imply, Urmall, Urmsome, LFPall, LFPsome, Allglobal, Allfuture, Existglobal, Existfuture}. The model M defined as 
5sets-language LM=-Semsets, Synsets, Lsets: Semsets . Synsets,, where 7sets: Synsets . Semsets evaluates set 
expressions to the sets they represent. In this language, Semsets is the semantic algebra with the carrier 
sets SemS =2S and SemB ={true, false}. The operators in the algebra and their signatures as defined by 
�sets are shown in [1]. We retain that semantic Semsets and Semctl have the carrier sets in the relation 
SemF 0 SemS. This allows due to similarity to show in the scheme all elements of carrier sets of Semctl 
through their occurrences in the carrier sets Semsets. 

3.2 Algebraic description of CTL model checker 
A CTL model checker defined as an algebraic compiler C:Lctl.LM by pair of embedding morphisms 
-TC,HC,. TC: Synctl . Synsets maps CTL formulas from word algebra Synctl to set expressions in Synsets, 
which evaluate to the satisfiability of sets of the CTL formulas, HC : Semctl . Semsets, maps sets in 
Semctl by the identity mapping to sets in Semsets and thus is constructed using the following approach 
[4,10]: 

1. Associate each operation octl from algebra Semctl with a set expression d(octl) from algebra 
Synsets with the property HC(octl(s1, … ,sn))=7sets(d(octl)(dctl(s1), …, dctl(sn))).  

o�Semctl Dctl (o)� Synctl  
LFPall(t1,t2) Z:=:; Z':= dctl(t2); Z'':= dctl(t1); 

while (Z;Z') do Z:=Z'; Z':=Z'9(Z''8 {s�S|succ(s)0 Z'}); end 
while 
dctl(LFPall(t1,t2)):=Z'; 

Table 2 The construction of d over the generators and operations Semctl and Synctl 
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2. The set of expressions from the second column of table 2 defines the operations of an algebra 
Syn'sets which is similar to the operations from Semctl and from Synctl. 

3. Syn'sets is a sub-algebra of Synsets, the embedding TC : Synctl . Syn'sets is constructed by the 
composition of T<C  and injection function I : Syn'sets . Synsets, given by TC=T<C = I. 

 
The morphisms TC and HC thus constructed make the diagram commutative. Commutatively assures 
the fact  that TC keeps the meaning of the formulas from Synctl when mapping them to set expressions 
in Synsets. The diagonal mapping Dctl:Semctl.Synsets is generated by dctl defined in table 2 and shows 
the translation process performed by TC using derived operations [4]. 

4 Algebraic implementation of CTL 
Construction of TC in the Subsection 3.2 can be entered into an algorithm which implements the CTL 
model checker. This algorithm is universal in the sense that being given operator scheme 5ctl and a 
model M, the model checker Lctl 

is automatically generate from the specifications of -5ctl, Dctl,. This 
specification is obtained by associating each operation o�Octl with an derived operation dctl(o)� Dctl. 
To define derived operations that implement the operations of 5ctl, from the Synsets algebra, we use 
meta-variables that take as values the set expressions of the carrier sets of Synsets. For each operation 
o�Octl such that �ctl(o)=s1×…×sn.s, dctl(o) takes as the formal parameters the meta-variables denoted 
by @i, 1> i> 2, where @i  denotes the set expression associated with i-th argument of dctl(o); the meta-
variable @0 is used to denote the resulting set expression, as example @0=dctl(o)(@1,…, @n) [1,4]. 

The CTL rules set which are directly specified in the algebra Sinctl can be ambiguous, therefore it is 
necessary that the set F from Sinctl to be divided in the non-terminal symbols denote with Ctlformula, 
Formula, Factor, Termen and Expresie. Thus, the defined rules deliver non-ambiguous specification 
in algebra Sinctl.  
In following we show the specification of AU formula 

Ctlformula . ”(” Ctlformula ”au” Ctlformula ”)” ; 
Macro: sets Z,Z1,Z2; 
             Z:=empty_set;Z1:=@3; Z2:= @1; 
             while(Z not_equiv Z1) do             
                Z:=Z1; Z1:=Z1 union {Z2 intersect {s in all_setS | (succ(s)subset Z1)}}; 
             endwhile 
             @0:=Z1; 

 
The ANTLR 3 [6] tools are used for the construction of software instruments as translators, 

compilers, recognition and parser of static/dynamic programs. The ANTLR is a generator of 
compilers; it receives as input a grammar, with a precise description of a language, and generates 
the source code and other auxiliary files for lexer and parser. The source code of our ANTLR 
grammar presented in paper [1] must contain the specification of all macro-operations presented in 
the section 3. We “decorate” the grammar for formula language with actions. ANTLR inserts our 
actions in the generated code for parser, and parser must execute embedded actions after matching 
the preceding grammar element. This is the mechanism of formula evaluation for a given model.  
In ANTLRWorks was implemented all macro-operations of CTL model checker. The program 
receives as input the model M where are defined the sets S, Rel and P.  

The detailed specification of AU operation defined in table 2 as actions in ANTLR grammar are 
presented in the following: 

ctlFormula returns [HashSet set] 
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@init {System.out.println("Incepe..."); init();} 
:  '(' c1=ctlFormula 'au' c2=ctlFormula ')'  
  {   HashSet rez = new HashSet(); ///Z:=:; 
      HashSet rez1 = new HashSet($c2.set); /// Z':= dctl(t2); 
      HashSet rez2 = new HashSet($c1.set);  // Z'':= dctl(t1); 

            while (!rez.equals(rez1)) {  
        rez.clear();rez.addAll(rez1);         
        HashSet tmp = new HashSet(); 
           boolean include; 
         for (int i=0; i<MAX_STARI; i++) { 
           include = true; 
           for (int j=0; j<MAX_STARI; j++) 
             if (rel[i][j]==1) 
               if (!(rez1.contains(new Integer(j)))) 
                 include = false; 
             if (include) tmp.add(new Integer(i)); 
         } 
         tmp.retainAll(rez2); rez1.addAll(tmp);  
      } 
      trace("ctlFormula",1); 
       printSet(" ( " + $c1.text + " au " + $c2.text + " ) ",rez1);  
       $set = rez1;        
  } 

The behavior of the model checker algorithm demonstrated in [1] consists of identifying the sets of 
states of a model M which satisfy each sub formula of a given CTL formula f and constructing the set 
of states, from these sets, that satisfy the formula f. This is certainly the behavior of the algorithm for 
the homeomorphism computation performed by an algebraic compiler. Thus is evaluated an 
expression by repeatedly identifying its sub expressions and replacing them with their images in the 
target algebra. In the case of the model-checking algorithm, sub expressions are CTL sub formulas and 
their images are the sets of states in the model satisfy the sub formulas. 

5 Algebraic specification of Real-Time CTL extension of CTL 
model checker 
Many times we need to specify when an event is necessary to be happened. For this we need a clock 
can measure the time. The main idea is to add the feasible constraint clock to states and transition.  
Formal verification methods have been developed to reason about the correctness of a system with 
respect to a given specification. In particular, model checking [7] of temporal logics has become one 
of the most successful verification techniques. Using this technique requires to adequately model a 
system by a finite state transition system so that specifications given in temporal logics can be checked 
for that model. 

Real-time systems must perform certain actions within limited time bounds or should start actions 
only after some point of time. It is therefore natural to label the transitions of the abstract transition 
system by numbers that denote the time required to move from one state to another one. In general, a 
transition from state s1 to state s2 with label k�N means that at any time x, where we are in state s1, we 
can perform an atomic action that requires k units of time. The action terminates at time x+k, where we 
are in state s2.  

The development of discrete real-time extensions of CTL has been initiated in [8], where the 
temporal operators have been extended by time bounds to limit the number of fixpoint iterations 
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required to evaluate the considered temporal expression. The models used in [8] were still traditional 
finite-state transition systems where each transition requires a single unit of time. In order to represent 
real-time systems in a more compact way, [9] introduced timed transition systems, where transitions 
are labelled by natural numbers that denote the time consumption of the action associated with the 
transition. 

For come to an CTL model checking which generate a real time logic is necessary to extend the 
CTL model with an until bounded operator. This operator contains an interval with a lower bound, 
denoted with mi, and an upper bound, denoted with ms, of time step number who allow the transition 
from one mi time to an ms time until an event to must happen. For this extension of CTL model 
checking is necessary to extend and modify the target language of sets to handle the various temporal 
logics.  

A real time CTL model checker, denoted CTLT is extending via adds a single specification rule. In 
this case the until operator U have attached an interval of time denoted by [mi,ms] which represent  
when the clock begin to measure and when is stop for that event happened.  

Be f1 and f2 two CTLT formula holds on a path � = [s0, s1, …, si, … , sj, …] if f2 holds on some 
states si, mi�i�ms and f1 holds on all states sj, 0�j�i. 

 
Definition 2 (Syntax Definition of CTLT model checker) If f1 and f2 are CTLT formula and mi,ms�N 
then the syntax of CTLT can be given in Backus-Naur form: 
     f ::  | |p|(¬ f1)| f11f2| f12f2| f13 f2| AX[mi,ms] f1| EX[mi,ms] f1|  
             AG[mi,ms] f1| EG[mi,ms] f1| AF[mi,ms] f1| EF[mi,ms] f1|                                                                  (2) 
            A[f1U[mi,ms]f2] | E[f1U[mi,ms]f2]                                                                                             
where 4p�AP. 
Definition 3 (Semantic Definition of CTLT model checker) Let M=(S, Rel, P:AP.2S) be a Kripke 
model for CTLT, and s in S, then the semantics of the logic is recursively defined as follows: 

 (M, s)   and M, s  for all s � S. 


 (M, s)  p iff p � P (s). 


 (M, s)  ¬f  iff (M, s)  f. 


 (M, s)  f1  f2 iff (M, s)  f1 and (M, s)  f2. 


  (M, s)  EX[mi,ms] f iff for some s1 such that s�s1, (M, s1)  f. 


  (M, s)  E[f1 U[mi,ms] f2] holds iff some a path [s0, s1, s2, …], where s0 = s, and some i with 

(mi<i<ms) and si  f2 and all j [0 j <i then sj f1].  


 (M, s)  A[f1 U[mi,ms] f2] holds iff all paths [s0, s1, s2, …], where s0 = s, and some i with 

(mi<i<ms) and si  f2 and all j [0 j <i then sj f1]. 
 
Algebraically the CTL algebra SynCTL is extend to SynCTLT which is a heterogeneous algebra with 
carrier sets F and N where F is the carrier set of SynCTLT formulas and N is the carrier set of positive 
integer constants used in the until bounded operator. The until operation is defined by U:F/�F�N�N 
.F. The construct formulas use the bounded until operator and is represented in the algebraic 
specification of the model checker as BNF rules. The algebraic specifications used to generate model 
checking implementation for CTLT are the same with CTL with the addition of bound.   
In following we show the specification of AU formula in CTLT model checker 

Ctlformula . ”(” Ctlformula ”au” ”[” mi ”,” ms ”]” Ctlformula ”)” ; 
Macro: sets Z,Z1; unsigned integer ms,mi,count; 
             Z= empty_set; Znew:= empty_set; Z1:= @2; Z2=@9; 
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             mi=@5;ms=@7;count=mi; 
             while ((Z1 not_equiv empty_set) and (count�ms)) do             
                Z:=Z1;  
                Znew:= Z2 intersect {s in all_setS | (succ(s) subset Z1)}; 
                if(count�mi and count�ms) 
                    Z1:=Z1 union Znew; 
                endif 
                  count:=count+1; 
             endwhile 
             @0:=Z1; 

 
Correctness of a system depends in some cases on the exact timing of events. As a consequence, 

the models must include the time at which events occur. A usually used formalism to model and 
reason about timed systems is timed automata [11]. In next section we show an example where we 
used a timed automaton which is an extension of finite state automata that define a set of real-valued 
clock variables. 

 

5.1. Train Gate Controller Example 
In this subsection we construct two figures which represent the description of Train Gate 

Controller.  
Problem description for Train Gate Controller is: Consider a trackage crossing whose physical 

layout is represented in Fig.1. There have a road crossing a trackage. Trains and cars cross the 
passageway area in turns. The crossing involves a gate who keeps the barrier up while the train not 
coming. The trackage have four sensors detecting when a train enters respectively exits the crossing. 
When the train approach and cross the first sensor the gate begin to close and also the clock begin to 
measure. The system consists of three main components, the trackage, the road, the controller, and its 
behaviour. 

Based on these sensor signals, a controller should signal the gate to open/close. In following we 
prove the properties for the system: When a train is in the crossing, the gate is closed. 

In Fig. 1 we show the trackage who was split in three regions. The first region, denoted by I, 
represent the process when the closing gate because the train approach. The second region, denoted by 
II, represents the process when the gate is close and the car waiting the train. The third region, denoted 
by III, represents the process when the opening gate because train move away. All the three regions 
contain a clock that is start when the train rive over the first red point. In enounce problem we named 
this red point with sensor. Red Points, represent by , means that clock start for counting. When the 
clock is start the gate moving down. In our example we choose the time for closing/opening gate to 6 
time units and 8 time units for close gate. For all three regions the time is a parameter who can be 
modified in terms of various situation, e.g. when the train go fast or slower. Return to our example the 
action for first region happens in 6 time units until the train rive over the second red point. The clock is 
bounded with a lower bound, denoted by mi, and the upper bound, denoted by ms.  Because the first 
region has 6 time units, the clock can measure time � R
0. A clock constraint of form mi�x�ms. That 
is mi:=0, count:=0, 0�x�6. When the count is 6 means the time is up and the gate is close. In the right 
side of Fig 1 we show how we split the time in three regions.  
 
Definition 4 The clock are usually written by x,y,…, sets of clock are Clock1, Clock2, … A clock-
constraint, denoted with Clock_Con(Clock), over clocks Clock is g�Clock_Con(Clock) where 
g::=x<c|x�c|x�c|x>c|g1g where g�Clock_Con(Clock) and c�N. 
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Fig 1. Description time for Train Gate Controller Fig 2. The CTL structure of Train-gate 
Controller 

 
 

As example we present in Fig. 2 a scenario for a train gate control system. The state-transition 
diagram showed in Fig. 2 has four locked-state events. These locked-state events occur because the 
Gate Train Controller, in most instances, takes one action and then awaits a response before moving 
for a new state. In fact, only three event flows, Move Up Request, Move Down Request and Start the 
clock (when we denote with Up and Down the move state when the request exist) do not qualify as 
locked-state events, because each of them can arrive any time a train and the clock start. The 
remaining events can occur while the train on-coming to the gate.  

Suppose that we have a train gate control which includes in first case a process for normal moving 
of gate (like, {s0,s3}) and in second case a faulty process (like, {s0,s1,s2}). In first case for the normal 
moving of gate process, doesn’t shall appear the errors, so the gate is closing and opening normal. The 
Clock is start to counting and cars are shall be stop when the gate is moving or is down. The second 
process is the faulty process, when the gate doesn’t moving when the Clock is start to counting. We 
construct this form of model, to find where the faulty process is, because the objective of model is to 
correct the event which contains the faulty process. CTL structure for the train-gate control is 
presented in the Fig. 2 and states of the system are denote with s0, s1,…, s3. 

The Kripke model has four states and the propositional variables are from the set {Start, Up, 
Down, Error}. Start represented the start Clock when start moving up or down the gate train, Up 
represent the Up gate, Down is the Down gate and Error means occur some error.  

The formal definition of the Kripke structure of the train-gate control is given by: M = (S, Rel, P), 
where S={s0,s1,s2,s3}, Rel={(s0,s0),(s0,s1), (s0,s3), (s1,s2), (s2,s3), (s3,s0), (s3,s2), (s3,s3) }, AP={Start,Up, 
Down, Error}, P assigns state s0 in M with not Start, Up, not Down and not Error, that is set 
{?Start,Up, ? Down,? Error}. P assigns state s1 in M with {?Start,Up,?Down,Error}, the state s2 in M 
with {? Start,?Up, Down,Error}, the state s3 in M with {Start,?Up, Down,? Error}.  
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If the path � = s0.@1 s1 .@2 s2.@3 s3….@n sn is a time-divergent compressed path then ��  f1 

U[mi,ms] f2 if and only if there is some i such that si +d  f2 for some d�[0,di] with d+5k=0,…,i-1 

dk�[mi,ms] and for all j�I and all d��[0,dj] such that d�+5k=0,…,j-1 dk�d+5k=0,…,i-1 dk the relation sj +d�  

f1 2f2 is valid. This represents the semantics of CTLT and is inspired from [2]. For our example the 
path can be write like � = s0.@1 s3 .@2 s3.@3 s0 where we define the execution like 

ExecutionTime(�)= 5@i�R
�0. That is � = s0 .6 s3.8 s3.6 s0%s0 .6 s0 +6 .a s3.8 s3 +8.b s0 .6 s0 +6.  

In our example we have three regions. Here we have three clock constraints consists of atoms x < | 
� | 
 | > | c for some c�N by definition 4. Consider clocks x,y,z and regions Reg=”x�(0,6]1 
y�(6,14]1z�(14,20]” like in Fig 3.  

 
Fig 3. Transition in Region Transition System 

 
Remarks on Region Transition System [2] are Reg  g if and only if for all ��Reg with �  g if and 

only if there exists ��Reg with �  g then there is no ambiguity in the labelling. Clock constraints of f 
CTLT formula become atomic propositions in Region Transition System, RTS(TA,f), where TA is the 
timed automata defined in [2] and TA  f represent the semantics CTLT. 
 Return to our model we check up the following properties: Is the gate closed for less then 
8 minute? The formula is, TA  A((Up1? Error) U[7,14] (Down1? Error)).  

We showed at first of this section AU formula specification in CTLT model checker.  
Beginning of this the A((Up1? Error) U[7,14] (Down1? Error)) formula executing like bellow: 

We initialize all sets with Z:= empty_set; Znew:= empty_set; Z1:= @2; Z2=@9; where Z1 
is set with state Up1? Error. This state is {s0}. Z2 is set with state Down1? Error. This state is 
{s3}. The Znew set is constructing with all state s from all_setS which have the successor in Z1 
and intersect with Z2 set. We initialize all positive integers with mi=@5,ms=@7,count=mi. 
That is mi=7;ms=14;count=mi;  

             while (({s0} /; :) and (7�14)) do             
                Z:=Z1={s0};  
                Znew:= {s3}8{s0,s3}={s3}; 
                if(7�7 and 7�14) 
                    Z1:={s0}9{s3}={ s0,s3}; 
                endif 
                  count:=7+1=8; 
                Return to while in next step 

                while (({s0,s3}/; :) and (8�14)) do             
                Z:=Z1={s0,s3};  
                Znew:= {s3}8{s0,s2,s3}={s3}; 
                if(8�7 and 8�14) 
                    Z1:= {s0,s3}9{s3}={ s0,s3}; 
                endif 
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                  count:=8+1=9; 
          Return to while in next step until count:=14 

                            
Fig 4. Interpretation step by step for AU formula in CTLT model checker  

 
If count is between mi and ms bound of until operator these nodes are added to the set of 
states satisfying formula. The loop terminates when no new nodes are added or the number of 
steps exceeds the upper limit. The correctness of implementation is given in Fig. 4 for our 
proposed model.  

6 Conclusion 
The behaviour of the real time model checker algorithm demonstrated in the section 5 consists of 
identifying the sets of states of a model M which satisfy each sub formula of a given CTLT formula f 
and constructing the set of states, from these sets, that satisfy the formula f over the bound. This is 
certainly the behaviour of the algorithm for the homeomorphism computation performed by an 
algebraic compiler. Thus is evaluated an expression by repeatedly identifying its sub expressions and 
replacing them with their images in the target algebra. In the case of the real time model-checking 
algorithm, sub expressions are CTLT sub formulas and their images are the sets of states in the model 
satisfy the sub formulas. 
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