
First International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, 22-25 October, 2009

Wasp based algorithms and applications

Dana Simian

Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present

1

A Constraint-Based Approach to the Timetabling Problem

Cristian Frăsinaru

Abstract

It is well known that timetabling problems are usually hard to solve and require a lot of compu-
tational effort. There are many theoretical models that address this type of problems and various
algorithms have been developed in order to attempt to solve them efficiently. However, it is not
easy at all to apply these models to real life situations. This paper presents a solution to create
an universal constraint-based model for representing the timetabling problem that can be applied
in universities, schools or any other similar domain. Once the model is created it can be effectively
solved with any CSP solver. We have used our own CSP solver, called OmniCS1 (Omni Constraint
Solver), that allows an incremental, human-aided approach to the timetabling problem, which proved
very useful in practical applications.

1 Introduction

A timetabling problem can be defined as the scheduling of some activities during a certain period of time.
Each activity has a set of properties, like the participants who attend it or the resources it requires, and it
is subject to certain restrictions regarding its possible planning. University timetables for instance must
manage entities like courses, students, teachers and rooms in order to create a mapping between courses
and the time-slots of the week. Usually, timetables cycle every week or every fortnight but this will not
become a requisition of our model.

Traditionally, the problem is solved manually and it is a tedious job that requires days or even weeks.
Automated building of the timetables is also very difficult because there are many types of restrictions
that must be accounted for and it is not easy to express them in computational forms.

The timetabling problem has been studied intensively since the sixties ([11]) and different techniques
for solving combinatorial problems have been used, such as graph coloring ([3]), integer programming
([13]), simulated annealing ([1]), tabu-search ([5]) or genetic algorithms ([2]). A survey can be found in
([16]).

Despite the fact that these methods have given good results, using them in real life applications
was not easy and quite counterintuitive not only because the complexity of the restrictions could not
be formalized properly but also because solving algorithms could not be modulated to follow human
judgement, an aspect which is very important in the interactive creation of the timetble.

In recent years, many computationally difficult problems from areas like planning and scheduling have
been proven to be easily modelled as constraint satisfaction problems (CSP) ([6], [18]) and a new pro-
gramming paradigm emerged in the form of constraint programming, providing the opportunity of having
declarative descriptions of CSP instances and also obtaining their solutions in reasonable computational
time. As a result, constraint satisfaction techniques have been applied to the timetabling problem ([10],
[15]).Because constraint programming received very much attention also from the industry, a lot of CSP

1Omnics is freely available at http://omnics.sourceforge.net

 96

Cristian Frasinaru

�

solvers emerged, i.e. applications that offer solutions to model a problem using constraints and also an
engine able to solve it. To give only a few examples, we can mention Ilog ([12]), Minion ([14]), Choco
([4]) or our solver OmniCS ([7]).

This paper presents a solution to create an universal constraint-based model for representing the
timetabling problem that can be applied in universities, schools or any other similar domain. Once the
model is created it can be effectively solved with any CSP solver. We have used our solver OmniCS
because it has distinctive features that make it appropriate for the timetabling problem, like the fact that
it allows human interaction in the process of finding a solution ([8]).

2 The Timetabling Problem

We attempt to describe the timetabling problem in a very flexible way such that the model we create
could be applied in an uniform manner in any domain that requires this specific type of planning.

The main entities that we deal with are: events, actors, resources, restrictions and a temporal domain
that contains the available time-slots.

2.1 The Events

We call events the atomic activities that must be scheduled. The property of atomicity specifies the
fact that we are developing a model in which the events are continuous, they cannot be interrupted and
resumed later. This is the most common situation in timetabling problems. However, there may be
situations, like planning the proceedings of a conference or workshop, when activities are not continuous
but fragmented during one or several days. In these cases, because the length of the fragments are known,
we will use multiple events to describe one complex activity and add appropriate constraints.

We have considered two categories of events:

• Iterative - the most common situation in schools or universities; here the temporal domain is usually
the carthesian product of the available week’s days and the possible starting hours, for instance:

{Monday, . . . , F riday} × {08 : 00, . . . , 19 : 00}

Most of the events will repeat by a specified number of times, usually the number of weeks in a
semester, and the timetable will be complete once we know the starting date and the number of
repetitions.

• Unique - used for representing events that will occur only once, like exams for instance; in this case,
the temporal domain contains explicitly specified pairs of dates and hours.

Regardless of the nature of the timetabling problem, the main features of an event are:

• the length - the required time for its completion, measured in an abstract manner;

• the number of repetitions, only for the events that are iterative;

• the frequency, once a week or once at two weeks, only for the events that are iterative;

• the participants that will attend to this event;

• the resources that are required, described at generic level;

• the constraints - specifications that will restrict the possible solutions for scheduling this event.

Scheduling an event involves the following operations:

• setting a value from the temporal domain: ”the class x will be held at the moment t”;

• assigning the resources: ”the class x will take place in the room s”;

 97

A Constraint-Based Approach to the Timetabling Problem

�

• satisfying the constraints that apply to this event.

We say that an event is resolved if it has been scheduled.
Let e an event and T the temporal domain of the problem. If e is resolved, we note start(e) ∈ T the

moment when it begins and end(e) ∈ T the moment when it is completed, otherwise start(e) and end(e)
are undefined. We also note week(e) ∈ {0, 1, 2} the week in which the event will take place (0 - all weeks,
1 - odds, 2 - even).

The fact that two events e1 and e2 are concurrent can be written as a disjunction concurrent(e1, e2) =
C1 ∨ C2, where

(C1) start(e1) < end(e2) ∧ start(e2) < end(e1)

is the condition that the events will not overlap inside a week and

(C2) week(e1) = 0 ∨ week(e2) = 0 ∨ week(e1) = week(e2)

is the condition that checks that the events take place at the same parity. We say that two events are
independent either if at least one of them is not resolved or they are not concurrent.

2.2 The Temporal Domain

We call temporal domain or temporal space a set of integers T = {t1, ..., tn} representing in an abstract
manner time-slots of a specified calendar. The events that must be scheduled will be assigned values
from this domain in order to be considered resolved. In this representation, the integer 1 will signify the
temporal unit of the domain and the events will have their lengths specified as a number of temporal
units, as oppossed to specifying them in minutes. Each temporal domain will be assigned a mapping
function responsible with transforming its elements into real dates.

Let us consider a common representation of a temporal domain in the case of a timetable whose
activities are iterative over a specified number of weeks. In this situation the structure of the week is
the same throughout the whole period, an event beeing scheduled on a certain day and at a certain hour
(each day has a start hour and an end hour). Let us note n the number of temporal units available every
day and m the number of days in a week. The domain would contain all the integers in the interval
[0, nm− 1], as suggested in the following graphical representation:

0 n . . . n(m− 1)
1 n + 1 . . . n(m− 1) + 1
...

...
...

...
n− 1 2n− 1 . . . nm− 1

If we note h0 the hour when the classes begin and d the length in minutes of a temporal unit, then
for an element t ∈ T the mapping function will be defined as date(t) = (day(t), hrs(t),min(t)), where
day(t) = 1 + [t/n], hrs(t) = h0 + (t− n[t/n])(d/60) and min(t) = (t− n[t/n])− 60(hrs(t)− h0).

2.3 The Actors

Each event involves a number of entities, some of them beeing assigned as preordained properties of the
event, while others are alloted dynamically depending on various conditions. We call actor or participant
an entity that is assigned to some event prior to the process of creating the timetable, for instance
a teacher or a group of students. Usually, actors are shared among events so they will be subject to
constraints that prevent, for example, an actor beeing in two places at the same time. The set of actors
may contain elements that are not independent regarding the inclusion, so representing actors in a unified
structure is very important for determing the relationships between them. From the point of view of the
event-actor association, we shall consider that an event e may have any number of actors, usually at
least one, noted as actors(e). In case of university timetables there are many situations when more than
one group of students attend a lecture or more teachers have to participate to a certain event, such as a
scientific meeting.

 98

Cristian Frasinaru

�

We define the inclusion tree as a structure that both enumerates all the actors that will participate
to the timetable’s events and surprises the relation of inclusion between them. The leaves of the tree will
represent atomic actors that is persons or groups of persons that are regarded as a whole and the internal
nodes will represent composite actors, precisely the union of all their leaves. An example of such a tree
is given below:

An event may have actors assigned to it from any level of the inclusion tree, either atomic or composite.
We say that two actors a1, a2 are independent if a1 ∩ a2 = ∅. It is easy to see that if a1 and a2 are not
independent then there exists a path from the root of the inclusion tree to a leaf, that contains both a1

and a2. Of course, when we schedule two events at the same time their actors must be independent.

2.4 The Resources

We call resource or specific resource an entity that is assigned to some event dynamically during the
process of creating the timetable, for instance a room, a projector or some other didactic equipment. The
capacity of a resource is the number of events that have this resource assigned to them and can be held
at the same time. Usually, the capacity is 1 and this makes sense especially for rooms, where obviously
only one event can be placed at a specific time. When it is not 1, the capacity of a resource represents a
number of concrete items handled in an uniform manner; for instance the resource may be ”Projector”
with capacity 3, meaning that there are actally 3 different projectors available in the storehouse. If we
place 4 courses on Monday at 08:00 and all require projectors, then we have a problem. We call a resource
with capacity 1 simple, otherwise we say that it is cumulative.

A generic resource is either a single specific resource or a set of specific resources. For instance, the
resource ”Laboratories” may be the set of all available laboratories, say {L1, L2, L3}.

An event may require some generic resources in different quantities and this is established at design
time, before we begin the process of creating the timetable. We note res(r) the resources required by an
event e. The event e must be held in a laboratory, so it has assigned the generic resource ”Laboratories”.
A resolved event must be assigned specific resources, in the same quantities as requested, so when we
place the event e on the timetable we have to choose one of {L1, L2, L3} and assign it to e.

3 Constraint Satisfaction Problems

Once we have an informal description of the timetabling problem, we must represent it in a CSP specific
manner.

A constraint network ([6]) is a triplet R = (X,D, C) where:

• X = {x1, ..., xn} is a finite set of variables;

• D = {D1, ..., Dn} represents finite domains that are associated to variables of X;

• C = {C1, ..., Ct} is a finite set of constraints.

 99

A Constraint-Based Approach to the Timetabling Problem

�

A constraint Ci is a relation Ri on a subset of variables Si, Si ⊆ X, which denotes their simultaneous
legal value assignments. In the above definition there is no restriction on the types of variables, their
domains may be integers, strings or anything else. There are also no specifications on how constraints
are defined. The purpose of a constraint is to restrict the possible values a variable xi can be assigned
from Di.

The instantiation of a variable is the process of assigning it to a value from its domain.
If R has at least one solution, we say that it is satisfiable or consistent.
A partial instantiation of a set of variables S is consistent if and only if it satisfies all the constraints

defined only over variables already instantiated.
In order to represent the timetablig problem as a network of constraints we have to identify the

variables, the domains and the constraints. As in most cases, there are more than one formal models of
the real life problem and, even if they are equivalent from a theoretical point of view, they may have an
important impact in the process of obtaining the solution. Two main directions emerge:

a. the variables represent events and their values will be elements from the temporal domain;

b. the variables represent time-slots and their domains will be the set of events.

In our approach we have chosen the first representation, not only because it allows us to include in the
model events that are not iterative but because we wanted to keep the size of the variable domains smaller
than the number of variables. Empirically, this seems to help the solving process.

3.1 Variabiles and Domains

For each activity e we consider a single variable noted also with e. Normally, the domains of the variables
would be sets of elements of the temporal domain of the problem. But, because each event requires a set
of resources, such as rooms or didactic equipment, it proved to be better to include these specifications
into the domain of the variables.

Let us consider a variable e, T = {t1, t2, ..., tk} the temporal space of the problem and {Ri|i = 1, p}
the required resources. Then, we represent the domain of e as the carthesian product:

De = T ×R1 ×R2 × ...Rp

For example, let us consider the following partial description of an event: ”The class will be held in
one of the laboratories {L1, L2}, it requires a projector P and one of the special equipments {E1, E2}”.
If the temporal space would be T = {t1 = Monday(10− 12), t2 = Tuesday(12− 14)} then the domain of
the event’s variable will contain eight elements, respectively:
{(t1, R1, P, E1), (t1, R1, P, E2), (t1, R2, P, E1), (t1, R2, P, E2),
(t2, R1, P, E1), (t2, R1, P, E2), (t2, R2, P, E1), (t2, R2, P, E2), }

Most of the times, the number of resources required by an event is small and this prevents the domains
of the variables to become oversized.

If the event takes place once at two weeks then its domain will have to reflect this also. In this case,
the domain we consider for the event is:

De = W × T ×R1 ×R2 × ...Rp

where W = {1, 2} represents the week (1-odd, 2-even).

3.2 The Constraints

The constraints must represent in the first place the restrictions of the timetable that should not be
violated at any time, like the fact that an actor cannot participate at two events at the same time or a
simple resource cannot be assigned simultaneously to different activities. These are the hard constraints.

In order to create a timetable that is to be accepted by all the participants it is not enough to satisfy
only the hard constraints. Nobody will be happy if they have 12 hours of classes in a row or a day that is

 100

Cristian Frasinaru

�

very fragmented. Of course, teachers or special study groups might have preferences regarding the time-
slots that are acceptable for them in order to attend their classes. However, these type of restrictions
could be violated if they lead to the imposibility of creating the timetable (suppose for instance that two
teachers require the same room and the same time-slot for their classes). Because of that, we call them
soft constraints ([17]).

The classical model of constraint satisfaction is defined over the premises that identifying a solution
means satisfying all the constraints of the problem. But there are many real life situations that cannot
be solved this way, either because they are over-constrained ([9]) and thus not consistent or because
their restrictions cannot be imposed in a yes-or-no manner. A good example of such a problem is the
timetabling problem. In a ”perfect” solution all these preferences would be satisfied but in most cases this
is not feasible and we are concerned in creating a timetable that is ”as good as possible”, in other words
minimizing somehow the number or the magnitude of the constraints that are not satisfied. Considerring
the soft constraints, the timetabling problem is usually represented as an optimization problem that uses
some valuation structure in order to determine when a solution is better than another. This structure
must specify levels of preferences that are assigned to constraints, meaning how bad is it if a constraint is
violated, and an operator that ”combines” levels of preferences, specifying how good is an instantiation
with respect to satisfying all the constraints of the network. The result is called the degree of satisfaction
offered by an instantiation.

From the practical point of view we have designed an XML representation of the restrictions that
apply to the timetabling problem. Each actor will have a descriptor file that formalizes its preferences
and also the resources required by his events. A special parser will transform these descriptions into
constraints specific to the OmniCS solver, which are actually Java classes. Each restriction might have
a penalty assigned. The presence of the penalty produces a soft constraint, otherwise the constraint is
considered to be hard.

Some of the constraints we have implemented are listed below.
Compatibility constraints

We say thet two resolved events e1 and e2 are compatible if they do not share actors or generic resources
(decided at design time) or they are not concurrent (decided at runtime):

((actors(e1) ∩ actors(e2) = ∅) ∧ (res(e1) ∩ res(e2) = ∅)) ∨ independent(e1, e2)

Thus, for every pair of events that share actors or resources, we must create such a hard constraint.
Compatibility constraints represent the most numerous set of constraints so their implementation is
critical for the performance of the solving process.

Resource Capacity Constraints

This type of constraint imposes that the number of concurrent events that share a cumulative resource
does not exceed the capacity of that resource. Let r be a resource with capacity c(r). Let us note
{e1, ..., ek} a set of concurrent events each using p(ei) units of resource r. The constraint states that:∑

i=1,k

p(ei) ≤ c(r)

For every resource we have to create such a global constraint defined over the set of all variables
representing events that require that resource.

Resource Disponibility Constraints

Another type of hard constraints is related to the fact that certain resources are not available throughout
the whole temporal space of the problem. This is a situation common for faculties that have different
timetables but share some rooms, each faculty having alloted only some days or time intervals to hold
classes in that rooms.

For every restricted resource we have to create a global disponibility constraint over the events that
require the resource, specifing also the temporal subspace that is available. This is a subset of the temporal
space and can be represented as an array a having hd elements where h is the number of temporal units
of a day and d is the number of days in a week, containing the following elements:

• 0 - allowed, with no penalty

 101

A Constraint-Based Approach to the Timetabling Problem

�

• +∞ - strictly forbidden

• 0 < c < ∞ - allowed, with penalty c; in that case the constraint is soft, otherwise it is hard.

Actor Disponibility Constraints

The majority of participants have preferences regarding the time-slots that are to be assigned to their
events. These types of preferences might be of common sense, like not having more than six hours in a
day, or of personal nature, like not beeing able to hold classes too late in the evening. These restrictions
can apply to all events of an actor or only to subsets of them. As in the case of resources, for each
actor and each of his preferences we have to create a constraint that accepts as argument the temporal
subspace that is available. We have designed a descriptive, easy to use method to specify this constraint:

<prefs actor="A">
<event id="E1, E2">

<res id="Laboratories"/>
<include day="1,2" hour="8,10,12"/>
<include day="5"/>

</event>
<event id="E3">

<exclude day="1"/>
<exclude day="2" penalty="10"/>

</event>
</prefs>

If no penalties are specified, this unary constraints will have the immediate effect of reducing the
domain of the variables and they will be removed from the network of constraints.

Sequence and Ordering Constraints

This type of constraints imposes that a set of events should take place in a compact block. We use the
directive linked to specify that a set of events should form a sequence and we can add special directives
like order, first, last to define a partial relation of ordering over these events. The exemple below
states that all three events E1, E2, E3 should take place in the same day, but E1 should precede E2.

<prefs actor="A">
<event id="E1,E2,E3">

<include day="1,2,3"/>
<linked/>

</event>
<order events="E1,E2" first="E1" last="E2"/>

</prefs>

Limitation Constraints

These are constraints that limit the number of days or hours in which a set of events should take place.
They are usually applied globally over the set of events of an actor, like in the following example that
states that actor A should have classes at most two days of the week and the number of hours should not
exceed six per day.

<prefs actor="A">
<days max="2"/>
<hours max="6"/>

</prefs>

The document type definition (DTD) of the XML model we have designed for representing the
timetabling problem is described below:

<!ELEMENT prefs (event|days|hours|linked|order)*>
<!ATTLIST prefs actor CDATA #IMPLIED>
<!ELEMENT event (res|include|exclude|days|hours|linked|order)*>

 102

Cristian Frasinaru

�

<!ATTLIST event id CDATA #IMPLIED>
<!ELEMENT res EMPTY>
<!ATTLIST res id CDATA #IMPLIED> <!-- Specifies the required resources -->
<!ELEMENT include EMPTY>
<!ATTLIST include <!-- Specifies a temporal subspace -->

day CDATA #IMPLIED <!-- One ore more days, comma separated -->
hour CDATA #IMPLIED <!-- One ore more hours, comma separated -->
penalty CDATA #IMPLIED> <!-- Penalty inflicted by not satisfying this -->

<!ELEMENT exclude EMPTY>
<!ATTLIST exclude <!-- Excludes a temporal subspace from domain -->

day CDATA #IMPLIED <!-- One ore more days, comma separated -->
hour CDATA #IMPLIED <!-- One ore more hours, comma separated -->
penalty CDATA #IMPLIED> <!-- Penalty inflicted by not satisfying this -->

<!ELEMENT linked EMPTY>
<!ATTLIST linked <!-- Specifies that some events form a sequence -->

events CDATA #IMPLIED <!-- One or more events, comma separated -->
penalty CDATA #IMPLIED> <!-- Penalty inflicted by not satisfying this -->

<!ELEMENT order EMPTY>
<!ATTLIST order <!-- Specifies that some events are ordered -->

events CDATA #IMPLIED <!-- One or more events, comma separated -->
first CDATA #IMPLIED <!-- The events that should take place before -->
last CDATA #IMPLIED <!-- The events that should take place after -->
penalty CDATA #IMPLIED> <!-- Penalty inflicted by not satisfying this -->

<!ELEMENT days EMPTY>
<!ATTLIST days <!-- Limitation of days within a week -->

events CDATA #IMPLIED <!-- One or more events, comma separated -->
max CDATA #IMPLIED <!-- Maximum number of days -->
min CDATA #IMPLIED <!-- Minimum number of days -->
penalty CDATA #IMPLIED> <!-- Penalty inflicted by not satisfying this -->

<!ELEMENT hours EMPTY>
<!ATTLIST hours <!-- Limitation of hours within a day -->

events CDATA #IMPLIED <!-- One or more events, comma separated -->
max CDATA #IMPLIED <!-- Maximum number of hours -->
min CDATA #IMPLIED <!-- Minimum number of hours -->
penalty CDATA #IMPLIED> <!-- Penalty inflicted by not satisfying this -->

4 The Solving Process

Once a problem is represented as a CSP instance we have to use a CSP solver in order to obtain a solution
or to discover that it is inconsistent. We have used our own CSP Solver, called OmniCS ([7], [8]), which
has some distinctive features that make it appropriate for approaching effectively the timetabling problem,
like the abilities to solve both classical and soft constraint satisfaction problems in an uniform manner
and to provide a mechanism for controlling the whole process of systematically searching the solution.
The basic structure of the algorithm we have used to develop our solver OmniCS is backtracking that uses
a flexible filter-and-propagate mechanism in order to obtain efficiency. In order to solve both classical
and soft CSP instances the solver also uses a branch-and-bound algorithm.

The systematic search algorithm must make a series of decisions in order to explore the search space.
A forward strategy is responsible with selection of the next variable that will be instantiated, thus defining
a relation of ordering over the whole set of variables. However, this order is not static and can be specified
during execution depending on specific conditions that can be evaluated only at runtime.

For this specific problem we have used a strategy that selects first variables with the smallest domains,
thus reducing the width of the search space. We considered more important the temporal nature of
the domain and for each event a tightness factor was computed, representing the degree of temporal

 103

A Constraint-Based Approach to the Timetabling Problem

�

restrictions that apply to it, according to the preferences of its actors. A value close to 0 means very
restrictive, while a value near 1 means very relaxed (tightness ∈ [0, 1]). The solver will instantiate
variables in an order based on the tightness values of their corresponding events, starting with the lowest
value. The second ordering criteria is maximal adjacency (we say that two events are adjacent if they
share at least one actor). The solver selects the variable that has as many adjacent resolved events as
possible; instantiating such a variable is likely to determine a better behavior of filter-and-propagate
algorithms.

An assignment strategy is responsible with defining a relation of ordering over the values of a variable’s
domain. As in the case of the forward strategy, this relation can be defined dynamically during execution.
We have used an assignment strategy that ensures a low fragmentation of the timetabling, from the actors
point of view.

A backward strategy defines how the solver will select the variable from which it will resume the search
process, after a failure was detected. Here, we have attempted to use an heuristic that attempts to
identify the real variable whose current instantiation is responsible for the current failure and return to
it rather than to return to the last chronologically variable instantiated before the one that provoked the
failure. Unfortunately, this was time consuming and did not improve the solving process very much.

Using these strategies, for a problem with around 300 events and more than 20.000 constraints, that
was not over-constraint, the solver OmniCS was able to find a solution in a couple of minutes with a very
small number of backtracks.

However, creating a benchmark was not our interest here. In real life applications, there are a
number of limitations concerning the process of creating the timetable as a monolith. Traditionally, the
algorithms for solving this type of problems have been designed considering that the network created
after the modelling phase is in its final form, that is assuming that it is static during the solving process.
In a real life situation, it is not uncommon that in the middle of the solving process we receive additional
information about the preferences of some participant that must be added to the existing ones. It would
be very frustrating if we had to start the whole process again, wasting all the computational effort
performed so far.

Fortunately, OmniCS offers the possibility to change the problem dynamically. Not only it permits to
rewrite the problem at runtime, without having to restart the whole process again, but it allows human
intervention in the search process, overwriting the default behavior of the solver. We have used this
facility in order to stop/resume the solving process, to adjust the partial solution manually, to add new
constraints or to remove deprecated ones.

Also, because the solver generates events as it searches for solutions and informs special objects called
observers it was easy to integrate it into a graphical user interface, especially designed for the timetabling
problem.

5 Conclusion

The timetabling problem is a typical planning problem that is very tedious to solve manually but also
difficult to approach with an automated solving technique. This complexity comes mostly from the
numerous types of restrictions that have to be formalized and taken into account in order to satisfy all
the educational requirememts and the various preferences of the participants.

Our goal was to create a set of specifications that allows the modelling of the timetabling problem in
a flexible, declarative manner that is suited not only for universities, but also for schools or other similar
domains. Then we show how to transform this model into a CSP instance, more precisely into a network
of constraints, and how to employ constraint programming techniques in order to obtain a solution or to
find the inconsistency of the network. For that, we have used our own CSP solver, called OmniCS, that
was invoked in a dynamical and interactive fashion. Eventually, the combination of automated solving
and human judgement proved to be very effective from the practical point of view, shortening very much
the process of creating the timetable.

The software system that has emerged from this study was used successfully at Faculty of Com-
puter Science of Iaşi, România, solving timetabling problems with more than 300 variables and 20.000
constraints.

 104

Cristian Frasinaru

�

References

[1] D. Abramson. Constructing school timetables using simulated annealing: Sequential and parallel
algorithms, 1991.

[2] Edmund Burke, David Elliman, and Rupert Weare. A genetic algorithm based university timetabling
system. In East-West Conference on Computer Technologies in Education, Crimea, Ukraine, pages
35–40, 1994.

[3] E.K. Burke, D.G. Elliman, and R. Weare. A university timetabling system based on graph colouring
and constraint manipulation, 1993.

[4] Choco. http://choco.sourceforge.net.

[5] Daniel Costa. A tabu search algorithm for computing an operational timetable. European Journal
of Operational Research, 76(1):98–110, July 1994.

[6] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[7] Cristian Frasinaru. Omnics. http://omnics.sourceforge.net.

[8] Cristian Frasinaru. Basic techniques for creating an efficient csp solver. Scientific Annals of Computer
Science, pages 83–112, 2007.

[9] Eugene C. Freuder. Partial constraint satisfaction. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, IJCAI-89, Detroit, Michigan, USA, pages 278–283, 1989.

[10] Hans-Joachim Goltz, Georg Kchler, and Dirk Matzke. Constraint-based timetabling for universities.
In In Proceedings INAP’98, 11th International Conference on Applications of Prolog, pages 75–80,
1998.

[11] C.C Gotlieb. The construction of class-teacher timetables. In In Proceedings of IFIP Congress,
North-Holland Pub. Co., Amsterdam, 73-77, 1962.

[12] Ilog. http://www.ilog.com.

[13] N.L. Lawrie. An integer programming model of a school timetabling problem. The Computer Journal,
12:307–316, 1969.

[14] Minion. http://minion.sourceforge.net/.

[15] Hana Rudova and Keith Murray. University course timetabling with soft constraints. In Practice
And Theory of Automated Timetabling IV. Springer-Verlag LNCS 2740, pages 310–328. Springer,
2002.

[16] Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.

[17] Thomas Schiex. Soft constraint processing. First International Summer School on Constraint Pro-
gramming, July 2005.

[18] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

Cristian Frăsinaru
University A.I.Cuza of Iaşi
Faculty of Computer Science
General Berthelot 16, 700483 Iaşi
ROMANIA
E-mail: acf@info.uaic.ro

 105

